Abstract:
A compensation circuit and an Organic Light Emitting Diode (OLED) device are disclosed. The compensation circuit includes a driver switch for driving a load, a reset energy storage element coupled to a to-be-reset terminal of the driver switch; and a reset charging circuit coupled to the reset energy storage element. During when the driver switch is reset, the reset charging circuit sequentially outputs a fast charging signal and a reset initialization signal to the reset energy storage element; the fast charging signal is for fast charging the reset energy storage element. The reset initialization signal is for adjusting the voltage output from the reset energy storage element to the driver switch's to-be-reset terminal to a preset voltage. Through the above design, the reset energy storage element may be fast charged with reduced charging time during the Reset stage, enhancing the Reset efficiency.
Abstract:
An adjusting method of display parameter and a liquid crystal display (LCD) system are provided. The adjusting method includes: obtaining a first luminance value and a second luminance value when a LCD panel displaying a minimum grayscale image and a maximum grayscale image respectively; based on the first luminance value, the second luminance value and a standard Gamma curve of the LCD panel, obtaining each target luminance value conforming to the standard Gamma curve and corresponding to each grayscale; based on the target luminance value of each grayscale and a relationship between grayscale voltage and luminance obtained in advance, obtaining a target grayscale voltage of each grayscale; and adjusting a grayscale voltage of each grayscale to be the target grayscale voltage of the grayscale to thereby achieve Gamma adjustment. By the above method, automatic adjustment of display parameter for the LCD panel can be achieved.
Abstract:
The present invention provides a method of adjusting flicker of the liquid crystal panel, comprising: providing a Nth liquid crystal panel to be implemented with flicker adjustment; counting a mathematical expectation μ and a standard deviation σ of the optimized voltage values of common electrodes of 1st to N−1th liquid crystal panels; setting an initial range (VL, VH) of adjusting voltage values of common electrodes, wherein VL=μ−Mσ, VH=μ+Mσ; showing a flicker image, and writing VH, VL, (VH+VL)/2 into a random access memory of the Nth liquid crystal panel one by one, and measuring corresponding flicker values; determining whether the flicker value corresponding to (VH+VL)/2 is a minimum among the three flicker values in the fourth step; if it is not the minimum, adjustment is accomplished; if it is the minimum, the adjustment is proceeded; writing the voltage values of common electrodes in the initial range (VL, VH) into the random access memory one by one and from low to high, and measuring corresponding flicker values; selecting a voltage value of common electrode corresponding to a minimum of the flicker values to be written into a read only memory of the Nth liquid crystal panel, and the adjustment is accomplished.
Abstract:
An adjustment circuit for measuring an optical parameter is disclosed. The adjustment circuit includes an optical sensing module for detecting an optical signal and converting the detected optical signal into a voltage signal; an amplification module for amplifying the voltage signal; an A/D conversion module for converting the amplified voltage signal into a digital signal; a control module for analyzing the digital signal for generating an analyzed result; a signal generating module for outputting a frequency square wave signal according to the analyzed result; and an adjustment module for adjusting an amplification factor of the amplification module according to the frequency square wave signal. The circuit of the present disclosure is easy, and an automatic measurement can be implemented.
Abstract:
Disclosed is a method for alleviating color shift of a display panel at a large viewing angle. The panel includes a sub-pixel array formed by R, G, B sub-pixels, and black matrix areas located between the sub-pixels. The method includes providing, above the sub-pixel array, an optical grating that is parallel with the sub-pixel array. The optical grating includes transparent areas and non-transparent areas. The non-transparent areas are provided above the black matrix areas. The optical grating is configured as such that when a sub-pixel is observed at a large viewing angle, light transmitted through the sub-pixel is partially blocked by the non-transparent areas of the optical grating.