Abstract:
The present invention provides a graphene polymer conductive film and a method of manufacturing the graphene polymer conductive film. The method uses a graphene conductive polymer as conductive filler such that the drawbacks of the conventional conductive film such as exceeded filler content, expensive, complex manufacturing process and high environment pollution. The manufacture of graphene uses the method of in situ polymerization such that the conductive polymer and the graphene are distributed more uniformly, the produced graphene conductive polymer is with good stability, and the conductivity is proved. The present invention further realizes size control of the graphene conductive polymer in the process of manufacturing the graphene conductive polymer through adjusting the ratio of raw materials of the graphene and the conductive monomers. The graphene polymer conductive film produced by the present invention has advantages of high conductivity, environment friendly, etc., and could be applied in a thin film transistor liquid crystal display for substituting conductive golden film or conductive silver film, or applied in connecting superfine circuitry.
Abstract:
A conductive adhesive includes spherical graphene and an epoxy gel system that includes epoxy, a hardener, and an accelerant. A mass ratio of the epoxy gel system to the spherical graphene is 100:2-30. The epoxy of the epoxy gel system is one of one of bisphenol A epoxy resins E44, bisphenol A epoxy resins E51, bisphenol A epoxy resins E54, bisphenol A epoxy resins EPON826, and bisphenol A epoxy resins EPON828, and an amount of the epoxy to the epoxy gel system is 80 wt % to 95 wt %. The hardener is one of hexahydrophthalic anhydride, tetrahydrophthalic anhydride, succinic dihydrazide, adipic acid dihydrazide, dicyandiamide, and phenylenediamine, and an amount of the hardener to the epoxy gel system is 1 wt % to 12 wt %. The accelerant is one of 2-ethyl-4-methylimidazole, imidazole, 2-methylimidazole, and triethylamine, and an amount of the accelerant to the epoxy system is 0.3 wt % to 5 wt %.
Abstract:
The present invention provides a pixel structure and a liquid crystal display panel including the pixel structure. The pixel structure includes a plurality of pixel units (1) arranged in an array. Each of the pixel units (1) includes a red sub-pixel (11), a green sub-pixel (12), and a blue sub-pixel (13) that are arranged in the form of a window sash. The red sub-pixel (11) and the blue sub-pixel (13) are arranged in a row in a vertical direction. The green sub-pixel (12) is individually arranged in a row. A surface area of the green sub-pixel (12) is greater than or equal to the sum of surface areas of the red sub-pixel (11) and the blue sub-pixel (13). A black matrix (4) is arranged along outer circumferences of the red sub-pixel (11), the green sub-pixel (12), and the blue sub-pixel (13). The pixel structure reduces the area occupied by the black matrix (4), expands the surface area of the green sub-pixel (12), increases aperture ratio and light transmittance, and enhances displaying performance.
Abstract:
The invention provide a manufacturing method for producing conductive adhesive with spherical graphene, and the steps comprise as following: step 1: preparing monomer, initiator, a dispersing agent and solvent to manufacture a monomer compound, and use the monomer compound to produce polymer micro ball; step 2: heating pre-treatment or plasma etching pre-treatment to the said polymer micro ball; step3: by chemical vapor deposition, the polymer micro ball after pre-treatment from step 2 to grow graphene outside surfaces or inside polymer micro ball, and then obtain the spherical graphene; step 4: producing epoxy gel system made by epoxy, hardener and accelerant with a certain ratio mixing homogeneously; step 5: dispersing the spherical graphene from step 3 into the epoxy gel system to produce pre-material of conductive adhesive of spherical graphene; Step 6: deforming the pre-material of conductive adhesive of spherical graphene, and then obtain conductive adhesive of spherical graphene.
Abstract:
The present invention provides a method of manufacturing conductive film and the conductive film itself. The method of manufacturing conductive film comprises the following steps: step 1 for preparing a graphene oxide; step 2 for providing a functional reagent to reacting with the graphene oxide for producing a functionalized graphene; step 3 for providing a curing agent and an organic solvent to mix with a certain amount of conductive particles, and then processed by an ultrasonic to produce a conductive particle dispersion liquid; the conductive particles are the functionalized graphene or a mixture of the functionalized graphene and other conductive particle; step 4 for providing an adhesive resin and diluting the adhesive resin with the organic solvent in the step 3; step 5 for mixing the adhesive resin diluted in the step 4 and the conductive particle dispersion liquid to produce a conductive film pre-mixture, and the conductive film pre-mixture is stirred repeatedly to be well mixed, and, after dispersed by the ultrasonic, the organic solvent is removed to produce a conductive film.