Abstract:
The present invention provides a high-power adjustable high-frequency fractional order capacitor with an order greater than 1, and a control method thereof. The fractional-order capacitor comprises an alternating current input module, a coupling impedance, a high-frequency alternating current controlled voltage source, a controller and an alternating current input sampling module. The controller generates a corresponding control signal according to an input voltage signal and an input current signal which are acquired by the alternating current input sampling module, and controls an output voltage of the controlled power source, such that an input current and an input voltage satisfy a current-voltage relationship of the fractional-order capacitor. The obtained relationship between the input current and the input voltage is consistent with the definition of the fractional-order capacitor with the order greater than 1.
Abstract:
The invention provides a fractional order series resonance system for wireless electric energy transmission, comprising a high-frequency power source, a transmitting component, a receiving component and a load, the transmitting component comprises a primary-side fractional order capacitance, a primary-side fractional order inductance that are connected in series, the primary-side fractional order inductance has a primary-side resistance; the receiving component comprises a secondary-side fractional order capacitance and a secondary-side factional order inductance that are connected in series, the secondary-side factional order inductance has a secondary-side resistance. The invention employs fractional order elements to realize wireless power transmission, and it adds dimensions for parameter design and is totally different from traditional wireless power transmission system implemented by integer order elements.
Abstract:
The invention provides a fractional order series resonance system for wireless electric energy transmission, comprising a high-frequency power source, a transmitting component, a receiving component and a load, the transmitting component comprises a primary-side fractional order capacitance, a primary-side fractional order inductance that are connected in series, the primary-side fractional order inductance has a primary-side resistance; the receiving component comprises a secondary-side fractional order capacitance and a secondary-side factional order inductance that are connected in series, the secondary-side factional order inductance has a secondary-side resistance. The invention employs fractional order elements to realize wireless power transmission, and it adds dimensions for parameter design and is totally different from traditional wireless power transmission system implemented by integer order elements.