Abstract:
A complex video event classification, search and retrieval system can generate a semantic representation of a video or of segments within the video, based on one or more complex events that are depicted in the video, without the need for manual tagging. The system can use the semantic representations to, among other things, provide enhanced video search and retrieval capabilities.
Abstract:
A system for object detection and tracking includes technologies to, among other things, detect and track moving objects, such as pedestrians and/or vehicles, in a real-world environment, handle static and dynamic occlusions, and continue tracking moving objects across the fields of view of multiple different cameras.
Abstract:
A complex video event classification, search and retrieval system can generate a semantic representation of a video or of segments within the video, based on one or more complex events that are depicted in the video, without the need for manual tagging. The system can use the semantic representations to, among other things, provide enhanced video search and retrieval capabilities.
Abstract:
A food recognition assistant system includes technologies to recognize foods and combinations of foods depicted in a digital picture of food. Some embodiments include technologies to estimate portion size and calories, and to estimate nutritional value of the foods. In some embodiments, data identifying recognized foods and related information are generated in an automated fashion without relying on human assistance to identify the foods. In some embodiments, the system includes technologies for achieving automatic food detection and recognition in a real-life setting with a cluttered background, without the images being taken in a controlled lab setting, and without requiring additional user input (such as user-defined bounding boxes). Some embodiments of the system include technologies for personalizing the food classification based on user-specific habits, location and/or other criteria.
Abstract:
A complex video event classification, search and retrieval system can generate a semantic representation of a video or of segments within the video, based on one or more complex events that are depicted in the video, without the need for manual tagging. The system can use the semantic representations to, among other things, provide enhanced video search and retrieval capabilities.
Abstract:
A food recognition assistant system includes technologies to recognize foods and combinations of foods depicted in a digital picture of food. Some embodiments include technologies to estimate portion size and calories, and to estimate nutritional value of the foods. In some embodiments, data identifying recognized foods and related information are generated in an automated fashion without relying on human assistance to identify the foods. In some embodiments, the system includes technologies for achieving automatic food detection and recognition in a real-life setting with a cluttered background, without the images being taken in a controlled lab setting, and without requiring additional user input (such as user-defined bounding boxes). Some embodiments of the system include technologies for personalizing the food classification based on user-specific habits, location and/or other criteria.
Abstract:
A complex video event classification, search and retrieval system can generate a semantic representation of a video or of segments within the video, based on one or more complex events that are depicted in the video, without the need for manual tagging. The system can use the semantic representations to, among other things, provide enhanced video search and retrieval capabilities.
Abstract:
A food recognition assistant system includes technologies to recognize foods and combinations of foods depicted in a digital picture of food. Some embodiments include technologies to estimate portion size and calories, and to estimate nutritional value of the foods. In some embodiments, data identifying recognized foods and related information are generated in an automated fashion without relying on human assistance to identify the foods. In some embodiments, the system includes technologies for achieving automatic food detection and recognition in a real-life setting with a cluttered background, without the images being taken in a controlled lab setting, and without requiring additional user input (such as user-defined bounding boxes). Some embodiments of the system include technologies for personalizing the food classification based on user-specific habits, location and/or other criteria.
Abstract:
A system for object detection and tracking includes technologies to, among other things, detect and track moving objects, such as pedestrians and/or vehicles, in a real-world environment, handle static and dynamic occlusions, and continue tracking moving objects across the fields of view of multiple different cameras.
Abstract:
A system for object detection and tracking includes technologies to, among other things, detect and track moving objects, such as pedestrians and/or vehicles, in a real-world environment, handle static and dynamic occlusions, and continue tracking moving objects across the fields of view of multiple different cameras.