Abstract:
An identification system includes a radar sensor configured to generate a time-domain or frequency-domain signal representative of electromagnetic waves reflected from one or more objects within a three-dimensional space over a period of time and a computation engine executing on one or more processors. The computation engine is configured to process the time-domain or frequency-domain signal to generate range and velocity data indicating motion by a living subject within the three-dimensional space. The computation engine is further configured to identify, based at least on the range and velocity data indicating the motion by the living subject, the living subject and output an indication of an identity of the living subject.
Abstract:
An identification system includes a radar sensor configured to generate a time-domain or frequency-domain signal representative of electromagnetic waves reflected from one or more objects within a three-dimensional space over a period of time and a computation engine executing on one or more processors. The computation engine is configured to process the time-domain or frequency-domain signal to generate range and velocity data indicating motion by a living subject within the three-dimensional space. The computation engine is further configured to identify, based at least on the range and velocity data indicating the motion by the living subject, the living subject and output an indication of an identity of the living subject.
Abstract:
A biometric access control system for controlling access to an environment based on an authorization status of a living subject is disclosed. In one example, a data source generates image data of a tissue region of the subject. A liveness measurement unit processes the image data to detect changes over at least one of time or spatial volume in one or more structural features of the tissue region and generates, based on the detected changes, a spoofing attack detection status indicating that the image data is from living biological tissue or that a spoofing attack is detected. A biometric identification unit processes at least a portion of the same image data generated by the data source to generate biometric information indicative of an identity of the subject. Responsive to the spoofing attack detection status and the biometric information, an authorization unit outputs an authorization status for the subject.
Abstract:
A computing system that receives an audio waveform representing speech from an individual and produces as output a modified version of the audio waveform that maintains the speaker's speech characteristics as well as prosody for specific utterances (e.g., voice timbre, intonation, timing, intensity). The system uses a bottleneck-based autoencoder with speech spectrograms as input and output. To produce the output audio waveform, the system includes a reconstruction error-based loss function with two additional loss functions. The second loss function is speaker “real vs fake” discriminator that penalizes for the output not sounding like the speaker. The third loss function is a speech intelligibility scorer that penalizes the output for speech that is difficult for the target population to understand. The produced modified audio waveform is an enhanced speech output that delivers speech m a target accent without sacrificing the personality of the speaker.
Abstract:
A computer implemented method for matching video data to a database containing a plurality of video fingerprints of the type described above, comprising the steps of calculating at least one fingerprint representing at least one query frame from the video data; indexing into the database using the at least one calculated fingerprint to find a set of candidate fingerprints; applying a score to each of the candidate fingerprints; selecting a subset of candidate fingerprints as proposed frames by rank ordering the candidate fingerprints; and attempting to match at least one fingerprint of at least one proposed frame.
Abstract:
A method and system for analyzing at least one food item on a food plate is disclosed. A plurality of images of the food plate is received by an image capturing device. A description of the at least one food item on the food plate is received by a recognition device. The description is at least one of a voice description and a text description. At least one processor extracts a list of food items from the description; classifies and segments the at least one food item from the list using color and texture features derived from the plurality of images; and estimates the volume of the classified and segmented at least one food item. The processor is also configured to estimate the caloric content of the at least one food item.
Abstract:
A multi-modal interaction modeling system can model a number of different aspects of a human interaction across one or more temporal interaction sequences. Some versions of the system can generate assessments of the nature or quality of the interaction or portions thereof, which can be used to, among other things, provide assistance to one or more of the participants in the interaction.
Abstract:
A biometric access control system for controlling access to an environment based on an authorization status of a living subject is disclosed. In one example, a data source generates image data of a tissue region of the subject. A liveness measurement unit processes the image data to detect changes over at least one of time or spatial volume in one or more structural features of the tissue region and generates, based on the detected changes, a spoofing attack detection status indicating that the image data is from living biological tissue or that a spoofing attack is detected. A biometric identification unit processes at least a portion of the same image data generated by the data source to generate biometric information indicative of an identity of the subject. Responsive to the spoofing attack detection status and the biometric information, an authorization unit outputs an authorization status for the subject.
Abstract:
Techniques for verifying identity of a human subject to an identification document are described. In some examples, a computing device may be connected to least two cameras oriented such that a first field of view is a substantially opposite direction from a second field of view. The device may receive images from the first camera that include a human subject. Second images from the second camera may include images of an ID document with a photograph of the human subject. The device may process the first images along with the respective, corresponding second images to determine respective 3D locations for at least one of cameras at the respective times the images were captured. Based on the sequence of 3D locations, along with the first images and the second images, the device may determine whether the human subject is a valid human subject.
Abstract:
Techniques for verifying identity of a human subject to an identification document are described. In some examples, a computing device may be connected to least two cameras oriented such that a first field of view is a substantially opposite direction from a second field of view. The device may receive images from the first camera that include a human subject. Second images from the second camera may include images of an ID document with a photograph of the human subject. The device may process the first images along with the respective, corresponding second images to determine respective 3D locations for at least one of cameras at the respective times the images were captured. Based on the sequence of 3D locations, along with the first images and the second images, the device may determine whether the human subject is a valid human subject.