Abstract:
A device includes a chip assembled on an interposer. An electrically-insulating layer coats an upper surface of the interposer around the chip. First metal lines run on the upper surface of the interposer and are arranged between conductive elements of connection to the chip. An end of each first metal line is arranged to extend beyond a projection of the chip on the interposer. A thermally-conductive via connects the end of the first metal line to a heat sink supported at an upper surface of the device.
Abstract:
A method for producing at least one through-silicon via inside a substrate may include forming a cavity in the substrate from a first side of the substrate until an electrically conductive portion is emerged onto. The method may also include forming an electrically conductive layer at a bottom and on walls of the cavity, and at least partly on a first side outside the cavity. The process may further include at least partially filling the cavity with at least one phase-change material. Another aspect is directed to a three-dimensional integrated structure.
Abstract:
A device includes a chip assembled on an interposer. An electrically-insulating layer coats an upper surface of the interposer around the chip. First metal lines run on the upper surface of the interposer and are arranged between conductive elements of connection to the chip. An end of each first metal line is arranged to extend beyond a projection of the chip on the interposer. A thermally-conductive via connects the end of the first metal line to a heat sink supported at an upper surface of the device.
Abstract:
A method for manufacturing a wafer on which are formed resonators, each resonator including, above a semiconductor substrate, a stack of layers including, in the following order from the substrate surface: a Bragg mirror; a compensation layer made of a material having a temperature coefficient of the acoustic velocity of a sign opposite to that of all the other stack layers; and a piezoelectric resonator, the method including the successive steps of: a) depositing the compensation layer; and b) decreasing thickness inequalities of the compensation layer due to the deposition method, so that this layer has a same thickness to within better than 2%, and preferably to within better than 1%, at the level of each resonator.
Abstract:
A method for manufacturing a wafer on which are formed resonators, each resonator including, above a semiconductor substrate, a stack of layers including, in the following order from the substrate surface: a Bragg mirror; a compensation layer made of a material having a temperature coefficient of the acoustic velocity of a sign opposite to that of all the other stack layers; and a piezoelectric resonator, the method including the successive steps of: a) depositing the compensation layer; and b) decreasing thickness inequalities of the compensation layer due to the deposition method, so that this layer has a same thickness to within better than 2%, and preferably to within better than 1%, at the level of each resonator.
Abstract:
A device includes a chip assembled on an interposer. An electrically-insulating layer coats an upper surface of the interposer around the chip. First metal lines run on the upper surface of the interposer and are arranged between conductive elements of connection to the chip. An end of each first metal line is arranged to extend beyond a projection of the chip on the interposer. A thermally-conductive via connects the end of the first metal line to a heat sink supported at an upper surface of the device.
Abstract:
In an embodiment a method for manufacturing an image sensor includes forming of a plurality of microlenses at a first resin layer, forming a mask on top of and in contact with the first resin layer, the mask comprising a second resin; and chemical plasma etching the first resin layer through the mask.
Abstract:
The present disclosure relates to a method for forming a cavity that traverses a stack of layers including a bottom layer, a first portion of which locally presents an excess thickness, the method comprising a first step of non-selective etching and a second step of selective etching vertically in line with the first portion.
Abstract:
A cavity is etched in a stack of layers which includes a first layer made of a first material and a second layer made of a second material. To etch the cavity, a first etch mask having a first opening is formed over the stack of layer. The stack of layers is then etched through the first opening to a depth located in the second layer. A second mask having a second opening, the dimensions of which are smaller, in top view, than the first opening, is formed over the stack of layer. The second opening is located, in top view, opposite the area etched through the first opening. The second layer is then etched through the second opening to reach the first layer. The etch method used is configured to etch the second material selectively over the first material.
Abstract:
A device includes a chip assembled on an interposer. An electrically-insulating layer coats an upper surface of the interposer around the chip. First metal lines run on the upper surface of the interposer and are arranged between conductive elements of connection to the chip. An end of each first metal line is arranged to extend beyond a projection of the chip on the interposer. A thermally-conductive via connects the end of the first metal line to a heat sink supported at an upper surface of the device.