Abstract:
Getter devices based on powders of alloys particularly suitable for hydrogen and nitrogen sorption are described. Such alloys have a composition including zirconium, vanadium, titanium and, optionally, one or more elements selected from iron, chromium, manganese, cobalt, nickel and aluminum.
Abstract:
Getter materials are described. The getter materials have non-evaporable getter alloys in their powder form having high gas sorption efficiency, particularly for hydrogen, carbon oxide and nitrogen, which after having lost their functionality in consequence of the exposure to reactive gases at a first temperature, can then be reactivated through a thermal treatment at a temperature between 400° C. and 600° C. The alloy powders have as compositional elements titanium and silicon and at least one additional metallic element selected among vanadium, iron and aluminum and have an atomic percentage composition of the elements which can vary within the following ranges: 1. Titanium from 60 to 85 atomic percentage; 2. Silicon from 1 to 20 atomic percentage; and 3. The sum of vanadium, iron and aluminum from 10 to 30 atomic percentage.
Abstract:
Getter devices based on powders of alloys particularly suitable for hydrogen and nitrogen sorption are described. Such alloys have a composition including zirconium, vanadium, titanium and, optionally, one or more elements selected from iron, chromium, manganese, cobalt, nickel and aluminum.
Abstract:
The present invention relates to a food container evacuation module (31) capable of enhanced performances in terms of attainable vacuum and also being portable and easy to use, to a food container evacuation system (300) comprising it and to food containers (33) apt to be used in such food container evacuation system (300).
Abstract:
Getter devices with improved sorption rate, based on powders of quaternary alloys particularly suitable for hydrogen and carbon monoxide sorption, are described. Quaternary alloys having a composition comprising zirconium, vanadium, titanium and aluminum as main constituent elements are also described.
Abstract:
A solar collector receiver tube containing an improved getter system is described. The solar collector receiver tube has a base, pills of getter material that are uniform in height, and a containment metallic mesh having a non-uniform height and presenting at least one depression.
Abstract:
A solar collector receiver tube containing an improved getter system is described. The solar collector receiver tube has a base, pills of getter material that are uniform in height, and a containment metallic mesh having a non-uniform height and presenting at least one depression.
Abstract:
A getter pump is described. The getter pump has a casing and a getter cartridge mounted within the casing. Each cartridge has a linear central support and spaced getter elements mounted on the linear central support. Each cartridge is positioned along a plane orthogonal to the revolution axis and intersecting the midpoint of a linear central support. The angle formed by each positioning plane with its respective linear central support is comprised between 35° and 75°.
Abstract:
Getter materials are described. The getter materials have non-evaporable getter alloys in their powder form having high gas sorption efficiency, particularly for hydrogen, carbon oxide and nitrogen, which after having lost their functionality in consequence of the exposure to reactive gases at a first temperature, can then be reactivated through a thermal treatment at a temperature between 400° C. and 600° C. The alloy powders have as compositional elements titanium and silicon and at least one additional metallic element selected among vanadium, iron and aluminum and have an atomic percentage composition of the elements which can vary within the following ranges: 1. Titanium from 60 to 85 atomic percentage; 2. Silicon from 1 to 20 atomic percentage; and 3. The sum of vanadium, iron and aluminum from 10 to 30 atomic percentage.