Abstract:
A method of manufacturing an imprint master template including forming a first layer pattern only in a partial region and a second layer formed in the entire region, and then a back exposure process is performed.
Abstract:
A method of manufacturing an imprint master template including forming a first layer pattern only in a partial region and a second layer formed in the entire region, and then a back exposure process is performed.
Abstract:
A method of manufacturing a roll type imprint master mold including disposing a base layer on a substrate including a first area and a second area adjacent to the first area, disposing an inorganic insulation layer on the base layer, forming a first mask pattern and a first resin pattern in the first area, forming a pattern layer by etching the inorganic insulation layer using the first resin and the first mask patterns as a mask, removing the first resin and the first mask patterns, forming a second mask pattern and a second resin pattern in the second area, forming a pattern layer by etching the inorganic insulation layer using the second resin and the second mask patterns as a mask, removing the second resin and the second mask patterns, separating the base layer from the substrate, and attaching the base layer onto a roll body.
Abstract:
An exemplary embodiment discloses an imprint lithography method including: forming a first imprint pattern on a base substrate in a first area; forming a first resist pattern on the base substrate in a second area, the second area partially overlapping the first area; etching a third area using the first imprint pattern and the first resist pattern as an etch barrier, wherein the third area is a portion of the first area that is not overlapped with the second area; removing the first imprint pattern and the first resist pattern; forming a second imprint pattern on the base substrate in a fourth area which overlaps the second area and partially overlaps the third area; forming a second resist pattern on the base substrate in the third area; and etching the second area using the second imprint pattern and the second resist pattern as an etch barrier.
Abstract:
An organic light-emitting display apparatus includes a substrate, a first electrode disposed on the substrate, a pixel-defining layer which is disposed on the substrate and the first electrode and in which an opening which exposes a central part of the first electrode is defined, an interlayer which is disposed on the first electrode and comprises an organic light-emitting layer; and a second electrode disposed on the interlayer, where a sidewall of the opening comprises a bumpy structure in which a plurality of bumps is disposed.
Abstract:
An imprint lithography method includes forming a first imprint pattern on a substrate in a first area and a third area, wherein the third area is spaced apart from the first area, forming a first resist pattern on the substrate on a second area, wherein the second area is adjacent the first and third areas, forming a first pattern in the first and third areas by etching an element under the first imprint pattern using the first imprint pattern and the first resist pattern as an etch barrier, forming a second imprint pattern on the substrate in a second area, forming a second resist pattern on the substrate on the first area and the third area, and forming a second pattern in the second area by etching an element under the second imprint pattern using the second imprint pattern and the second resist pattern as an etch barrier.
Abstract:
A manufacturing method of a mother substrate assembly includes forming a metal layer on substantially an entire surface of a transparent substrate including a cell area including a non-display area and a display area, an align key area, and a substrate area surrounding the cell area and the align key area, etching the metal layer to form an align key in the align key area, etching the metal layer to form a reflection part in the non-display area, and etching the metal layer in the display area to form a metal nanowire in the display area.
Abstract:
A liquid crystal display apparatus includes a first substrate, a second substrate spaced from the first substrate, and a liquid crystal layer disposed between the first substrate and the second substrate. The first substrate includes a first base substrate, a wire grid polarizer disposed on the first base substrate, and a first alignment layer disposed on the first base substrate and including photo-alignment material, wherein the first alignment layer includes a first area in which photo-alignment is performed and a second area in which photo-alignment is not performed. A method of manufacturing the apparatus is also disclosed.
Abstract:
A block copolymer is provided. The block copolymer according to an exemplary embodiment includes a first block represented by Chemical Formula 1 and a second block represented by Chemical Formula 2: wherein COM1 and COM2 are independently selected from a polystyrene moiety, polymethylmethacrylate moiety, polyethylene oxide moiety, polyvinylpyridine moiety, polydimethylsiloxane moiety, polyferrocenyldimethylsilane moiety, and polyisoprene moiety, R1 is hydrogen or an alkyl group with 1 to 10 carbon atoms, Ph is a phenyl group, a is 1 to 50, R2 is hydrogen or an alkyl group with 1 to 10 carbon atoms, and b is 1 to 50.
Abstract:
A wire grid polarizer includes a base substrate, a wire grid pattern, a first stitch line extending in a first direction, and a second stitch line extending in a second direction which crosses the first direction, and including a first portion and a second portion which are discontinuous from each other, in which the wire grid pattern is evenly formed on all of the base substrate except where the first and second stitch lines exist, and the first and second stitch lines are where the wire grid pattern is unevenly formed.