Abstract:
A semiconductor light emitting device is provided and includes a protective element including a first lower conductivity-type semiconductor layer and a second lower conductivity-type semiconductor layer. First and second lower electrodes are connected to the first lower conductivity-type semiconductor layer and the second lower conductivity-type semiconductor layer, respectively. A light emitting structure includes a first upper conductivity-type semiconductor layer, an active layer, and a second upper conductivity-type semiconductor layer sequentially formed on the protective element. First and second upper electrodes are connected to the first upper conductivity-type semiconductor layer and the second upper conductivity-type semiconductor layer, respectively.
Abstract:
A semiconductor light-emitting device includes a light-emitting structure including a first semiconductor layer, an active layer, and a second semiconductor layer which are sequentially stacked, a first insulating layer on the second semiconductor layer with a plurality of first openings having first widths and a plurality of second openings having second widths different from the first widths, a first electrode electrically connected to the first semiconductor layer through the first openings, a first sub-electrode layer between the second semiconductor layer and the first insulating layer, the first sub-electrode layer being exposed through the second openings, and a second sub-electrode layer on the first insulating layer, the second sub-electrode layer being connected to the first sub-electrode layer through the second openings, wherein a first distance between the first openings closest to each other is different from a second distance between the second openings closest to each other.
Abstract:
The present disclosure relates to semiconductor devices. An example semiconductor device includes a channel layer, a barrier layer on the channel layer including a material having a different energy band gap than a material included in the channel layer, a gate electrode on the barrier layer, a gate semiconductor layer between the barrier layer and the gate electrode, a protection layer on the barrier layer and the gate electrode, a source electrode and a drain electrode on both sides of the gate electrode and extending through the protection layer to cover the side surfaces of the channel layer and the barrier layer, and a diffusion barrier layer within the protection layer covering the barrier layer and the gate electrode and including Nitrogen.
Abstract:
A semiconductor light-emitting device includes a light-emitting structure including a first semiconductor layer, an active layer, and a second semiconductor layer which are sequentially stacked, a first insulating layer on the second semiconductor layer with a plurality of first openings having first widths and a plurality of second openings having second widths different from the first widths, a first electrode electrically connected to the first semiconductor layer through the first openings, a first sub-electrode layer between the second semiconductor layer and the first insulating layer, the first sub-electrode layer being exposed through the second openings, and a second sub-electrode layer on the first insulating layer, the second sub-electrode layer being connected to the first sub-electrode layer through the second openings, wherein a first distance between the first openings closest to each other is different from a second distance between the second openings closest to each other.
Abstract:
A semiconductor light-emitting device includes a light-emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer, microstructures regularly arranged on the first conductivity-type semiconductor layer around the light-emitting structure, and a gradient refractive layer on at least a portion of the microstructures, the gradient refractive layer having a lower refractive index than the first conductivity-type semiconductor layer.
Abstract:
A semiconductor light-emitting device includes a light-emitting structure including a first semiconductor layer, an active layer, and a second semiconductor layer which are sequentially stacked, a first insulating layer on the second semiconductor layer with a plurality of first openings having first widths and a plurality of second openings having second widths different from the first widths, a first electrode electrically connected to the first semiconductor layer through the first openings, a first sub-electrode layer between the second semiconductor layer and the first insulating layer, the first sub-electrode layer being exposed through the second openings, and a second sub-electrode layer on the first insulating layer, the second sub-electrode layer being connected to the first sub-electrode layer through the second openings, wherein a first distance between the first openings closest to each other is different from a second distance between the second openings closest to each other.
Abstract:
A semiconductor light-emitting device includes a light-emitting structure including a first semiconductor layer, an active layer, and a second semiconductor layer which are sequentially stacked, a first insulating layer on the second semiconductor layer with a plurality of first openings having first widths and a plurality of second openings having second widths different from the first widths, a first electrode electrically connected to the first semiconductor layer through the first openings, a first sub-electrode layer between the second semiconductor layer and the first insulating layer, the first sub-electrode layer being exposed through the second openings, and a second sub-electrode layer on the first insulating layer, the second sub-electrode layer being connected to the first sub-electrode layer through the second openings, wherein a first distance between the first openings closest to each other is different from a second distance between the second openings closest to each other.
Abstract:
A semiconductor light emitting device includes a first conductivity-type semiconductor layer, an active layer and a second conductivity-type semiconductor layer sequentially stacked on a substrate. A first electrode is disposed on a portion of the first conductivity-type semiconductor layer. A current diffusion layer is disposed on the second conductivity-type semiconductor layer and includes an opening exposing a portion of the second conductivity-type semiconductor layer. A second electrode covers a portion of the current diffusion layer and the exposed portion of the second conductivity-type semiconductor layer, wherein the portion of the current diffusion layer is near the opening.