Abstract:
A voice coil motor control signal is detected being coupled into a vibration sensor of a hard disk drive. The vibration sensor is used to provide a feedforward signal to a servo control system of the hard disk drive. In response to detecting the coupling, the feedforward signal is modified to prevent instability of the servo control system.
Abstract:
A signal is monitored that provides an indicator of disturbance affecting a hard disk drive. In response to determining that the indicator of the disturbance satisfies a threshold, a lattice recursive least squares computation is applied to the signal to determine at least one notch frequency. A notch filter is formed using the at least one notch frequency. The notch filter is used by a servo controller loop that positions a read/write head over a disk of the hard disk drive. The notch filter is applied to the servo control loop for subsequent positioning of the read/write head.
Abstract:
Apparatus and method for controlling the position of a control object using a multi-stage actuator. In some embodiments, a multi-stage actuator is provided with first and second actuation stages adapted to position a control object. A control circuit includes a multi-tap lattice structure and parallel first and second multiple regression filters coupled to respective taps of the multi-tap lattice structure. The control circuit concurrently generates and applies first and second disturbance rejection signals to the respective first and second actuation stages to compensate a disturbance signal component in a position error signal (PES) indicative of position error of the control object.
Abstract:
In accordance with certain embodiments, a method is provided for sensing linear vibration and rotational vibration. The method includes generating a combined linear vibration and rotational vibration signal. The combined linear vibration and rotational vibration signal may then be processed with an adaptive filter.
Abstract:
Apparatus and method for controlling the position of a control object using a multi-stage actuator. A multi-stage actuator is provided with first and second actuation stages adapted to position a control object. A control circuit includes a multi-tap lattice structure and parallel first and second multiple regression filters coupled to respective taps of the multi-tap lattice structure. The control circuit concurrently generates and applies first and second disturbance rejection signals to the respective first and second actuation stages to compensate a disturbance signal component in a position error signal (PES) indicative of position error of the control object.
Abstract:
In response to positioning a read/write head of a hard drive, a voice coil motor (VCM) input signal is applied to a voice coil motor and a microactuator (PZT) input signal is applied to a microactuator. A position signal is determined in response to positioning the read/write head. A PZT component is decoupled from the position signal to determine an estimated VCM response. The estimated VCM response used to determine an estimated VCM disturbance. A VCM component is decoupled from the position signal to determine an estimated PZT response. The estimated PZT response used to determine an estimated PZT disturbance. The VCM input signal and the PZT input signal are modified respectively to compensate for the estimated VCM disturbance and the estimated PZT disturbance.
Abstract:
An apparatus includes a microactuator controller configured to generate a microactuator control signal, a feedforward microactuator compensator configured to generate a microactuator compensation signal, and a microactuator model filter configured to filter a modified microactuator control signal. The microactuator compensation signal is configured to be injected into the microactuator control signal to generate the modified microactuator control signal. The microactuator model filter generates a filtered modified microactuator control signal and injects the filtered modified microactuator control signal into a position error signal to generate a modified position error signal.
Abstract:
In response to positioning a read/write head of a hard drive, a voice coil motor (VCM) input signal is applied to a voice coil motor and a microactuator (PZT) input signal is applied to a microactuator. A position signal is determined in response to positioning the read/write head. A PZT component is decoupled from the position signal to determine an estimated VCM response. The estimated VCM response used to determine an estimated VCM disturbance. A VCM component is decoupled from the position signal to determine an estimated PZT response. The estimated PZT response used to determine an estimated PZT disturbance. The VCM input signal and the PZT input signal are modified respectively to compensate for the estimated VCM disturbance and the estimated PZT disturbance.
Abstract:
In accordance with certain embodiments, a method is provided for sensing linear vibration and rotational vibration. The method includes generating a combined linear vibration and rotational vibration signal. The combined linear vibration and rotational vibration signal may then be processed with an adaptive filter.