Abstract:
A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
Abstract:
A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
Abstract:
To provide a method for manufacturing a semiconductor device including an oxide semiconductor film having conductivity, or a method for manufacturing a semiconductor device including an oxide semiconductor film having a light-transmitting property and conductivity. The method for manufacturing a semiconductor device includes the steps of forming an oxide semiconductor film over a first insulating film, performing first heat treatment in an atmosphere where oxygen contained in the oxide semiconductor film is released, and performing second heat treatment in a hydrogen-containing atmosphere, so that an oxide semiconductor film having conductivity is formed.
Abstract:
To provide a method for manufacturing a semiconductor device including an oxide semiconductor film having conductivity, or a method for manufacturing a semiconductor device including an oxide semiconductor film having a light-transmitting property and conductivity. The method for manufacturing a semiconductor device includes the steps of forming an oxide semiconductor film over a first insulating film, performing first heat treatment in an atmosphere where oxygen contained in the oxide semiconductor film is released, and performing second heat treatment in a hydrogen-containing atmosphere, so that an oxide semiconductor film having conductivity is formed.
Abstract:
A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
Abstract:
To provide a method for manufacturing a semiconductor device including an oxide semiconductor film having conductivity, or a method for manufacturing a semiconductor device including an oxide semiconductor film having a light-transmitting property and conductivity. The method for manufacturing a semiconductor device includes the steps of forming an oxide semiconductor film over a first insulating film, performing first heat treatment in an atmosphere where oxygen contained in the oxide semiconductor film is released, and performing second heat treatment in a hydrogen-containing atmosphere, so that an oxide semiconductor film having conductivity is formed.
Abstract:
A method for forming an oxide that can be used as a semiconductor of a transistor or the like is provided. In particular, a method for forming an oxide with fewer defects such as grain boundaries is provided. One embodiment of the present invention is a semiconductor device including an oxide semiconductor, an insulator, and a conductor. The oxide semiconductor includes a region overlapping with the conductor with the insulator therebetween. The oxide semiconductor includes a crystal grain with an equivalent circle diameter of 1 nm or more and a crystal grain with an equivalent circle diameter less than 1 nm.
Abstract:
To provide a method for manufacturing a semiconductor device including an oxide semiconductor film having conductivity, or a method for manufacturing a semiconductor device including an oxide semiconductor film having a light-transmitting property and conductivity. The method for manufacturing a semiconductor device includes the steps of forming an oxide semiconductor film over a first insulating film, performing first heat treatment in an atmosphere where oxygen contained in the oxide semiconductor film is released, and performing second heat treatment in a hydrogen-containing atmosphere, so that an oxide semiconductor film having conductivity is formed.
Abstract:
A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
Abstract:
The oxide includes indium, an element M, and zinc. The oxide includes a first region and a second region. A peak of diffraction intensity derived from a crystal structure is not observed in the first region using X-ray. An electron diffraction pattern including a third region with high luminance in a ring pattern and a spot in the third region is observed by transmission of an electron beam having a probe diameter of 0.3 nm or more and 3 nm or less through the second region. The oxide includes a crystal part when being observed with a transmission electron microscope.