Abstract:
A charging and control system for a robotic lawnmower, having a circuit loop that includes several wire segments, of which one or more are boundary wire segments that may define or demarcate the boundary of an area within which the lawnmower is permitted to move; a charging voltage signal, for charging the lawnmower's internal battery, and a positioning voltage signal for assisting the lawnmower in determining its current position, are produced respectively by a power supply and a signal generator, which are both provided within the same housing; the two signals are both communicated from this housing over the same wire segments of the circuit loop; a charging station may then be electrically connected to the circuit loop by an end-user so that the charging voltage signal may in use of the system be communicated to the lawnmower when it is docked at the charging station, thus charging the internal battery of the lawnmower.
Abstract:
An Autonomous robot, that is for example, suitable for operations such as vacuuming and surface cleaning includes a payload configured for vacuum cleaning, a drive system including a steering system, a navigation system, and a control system for integrating operations of the aforementioned systems.
Abstract:
A robotic system comprises a transmitter emitting a plurality of angularly-spaced beams of radiation in an area; and a robot moving within said area and able to detect when it is in the path of one of said beams. On moving through a measured distance across the paths of two or more of the beams, the robot can determine the relative position of the transmitter and the robot by using the distance and the angular spacing of the beams.
Abstract:
An autonomous robot, that is for example, suitable for operations such as vacuuming and surface cleaning includes a payload configured for vacuum cleaning, a drive system including a steering system, a navigation system, and a control system for integrating operations of the aforementioned systems.
Abstract:
A method for automatically operating a robot, attached to a lawnmower or other unmanned machine, within an enclosed area is disclosed. The method includes the steps of: 1) providing the following elements: a proximity sensor positioned on the robot, a boundary along the perimeter of the working area and along the perimeter of each area enclosed in the working area in which the robot should not operate, the boundaries being detectable by the proximity sensor, a processing unit connected to the proximity sensor and receiving an input therefrom, a navigation unit on the robot to determine the coordinates of the robot relative to an arbitrary origin, a direction finder, and a memory to store values generated by the processing unit; and 2) causing the robot to move along each of the boundaries provided around or within the working area, to detect the boundaries and to memorize their shape, and to store in the memory values representative of the coordinates of the boundaries, thereby to generate a basic map of the working area. When the robot is to operate within the area, the method includes the steps of: (a) causing the robot to start from a starting point having known coordinates within the basic map of the working area; (b) continuously determining the coordinates of the robot by analyzing data obtained from the navigation unit and by detecting the vicinity of a boundary; and (c) correcting the actual position of the robot on the basic map by comparing the calculated and the actual coordinates of each detected boundary.
Abstract:
A system is employed for defining a position (location) of a receiving element inside an area surrounded by a wire loop, along the perimeter (a perimeter wire loop), of a work area or other bounded area. In particular, the system can determine whether the receiver is inside or outside the loop, and evaluate its distance from the perimeter wire.
Abstract:
An Autonomous robot, that is for example, suitable for operations such as vacuuming and surface cleaning includes a payload configured for vacuum cleaning, a drive system including a steering system, a navigation system, and a control system for integrating operations of the aforementioned systems.
Abstract:
A system is employed for defining a position (location) of a receiving element inside an area surrounded by a wire loop, along the perimeter (a perimeter wire loop), of a work area or other bounded area. In particular, the system can determine whether the receiver is inside or outside the loop, and evaluate its distance from the perimeter wire.