-
公开(公告)号:US20220341836A1
公开(公告)日:2022-10-27
申请号:US17639355
申请日:2020-09-03
Inventor: Ye AI , Dahou YANG
IPC: G01N15/10
Abstract: There is provided a microfluidic device for single cell processing including: a substrate; a fluidic channel provided in the substrate; and a plurality of electrodes arranged adjacent to the fluidic channel for determining a position of a cell in the fluidic channel, the plurality of electrodes comprising a pair of sensing electrodes comprising a first sensing electrode and a second sensing electrode, wherein at least the first sensing electrode of the pair of sensing electrodes extends in a first direction, the pair of sensing electrodes is configured to measure a differential electrical signal across a sensing region as the cell flows through the sensor portion of the fluidic channel; and a biasing electrode arranged between the first sensing electrode and the second sensing electrode, the biasing electrode being configured to receive a biasing voltage. One of the second sensing electrode and the biasing electrode extends in a direction at least substantially parallel to the first sensing electrode and the other one of the second sensing electrode and the biasing electrode is arranged to have a slanted orientation with respect to the first sensing electrode. There is also provided a method of forming the microfluidic device, and a method and a system for single cell processing using the microfluidic device.
-
公开(公告)号:US20220187184A1
公开(公告)日:2022-06-16
申请号:US17436101
申请日:2020-03-05
Inventor: Ye AL , Dahou YANG
Abstract: A microfluidic device includes a substrate; a plurality of electrode channels, including a first electrode channel, a second electrode channel, a third electrode channel and a fourth electrode channel, each containing an electrode material to form an electrode; and a plurality of fluidic channels, including a first fluidic channel and a second fluidic channel, each being configured to form a fluid pathway for allowing a fluid sample to flow through and at least one of the first and second fluidic channels including a cell manipulation portion, the cell manipulation portion including a plurality of constriction portions. The first and second electrode channels are each coupled to the first fluidic channel and the electrodes of the first and second electrode channels and the third and fourth electrode channels are each coupled to the second fluidic channel and the electrodes of the third and fourth electrode channels.
-