Abstract:
Systems and methods are disclosed for managing energy of a UAV during flight. In particular, the disclosed systems and methods assist in safely returning a UAV to ground while reducing diversionary time for providing energy to the UAV. In one or more embodiments, the disclosed systems and methods calculate a measure of remaining energy with regard to a UAV flying a mission plan and a measure of landing energy needed to travel to a landing station. The disclosed systems and methods can select a transition point from a mission plan and route leading from the mission plan to the landing station by comparing the calculated measure of remaining energy and the calculated measure of landing energy. Moreover, the disclosed system and methods can modify a mission plan to include the selected transition point and route.
Abstract:
The present disclosure is directed toward systems and methods for autonomously landing an unmanned aerial vehicle (UAV). In particular, systems and methods described herein enable a UAV to land within and interface with a UAV ground station (UAVGS). In particular, one or more embodiments described herein include systems and methods that enable a UAV to conveniently interface with and land within a UAV ground station (UAVGS). For example, one or more embodiments include a UAV that includes a landing base and landing frame that interfaces with a landing housing of a UAVGS.
Abstract:
The present disclosure is directed toward systems and methods for autonomously landing an unmanned aerial vehicle (UAV). In particular, systems and methods described herein enable a UAV to land within and interface with a UAV ground station (UAVGS). In particular, one or more embodiments described herein include systems and methods that enable a UAV to conveniently interface with and land within a UAV ground station (UAVGS). For example, one or more embodiments include a UAV that includes a landing base and landing frame that interfaces with a landing housing of a UAVGS.
Abstract:
Systems and methods are disclosed for managing energy of a UAV during flight. In particular, the disclosed systems and methods assist in safely returning a UAV to ground while reducing diversionary time for providing energy to the UAV. In one or more embodiments, the disclosed systems and methods calculate a measure of remaining energy with regard to a UAV flying a mission plan and a measure of landing energy needed to travel to a landing station. The disclosed systems and methods can select a transition point from a mission plan and route leading from the mission plan to the landing station by comparing the calculated measure of remaining energy and the calculated measure of landing energy. Moreover, the disclosed system and methods can modify a mission plan to include the selected transition point and route.
Abstract:
Systems and methods disclosed utilize acceleration information in landing an unmanned aerial vehicle. In particular, one or more embodiments include methods and systems that determine a UAV is landing, identify an acceleration spike relative to the UAV, and modify operation of the UAV while landing based on the acceleration spike. For example, in one or more embodiment, systems and methods identify an acceleration spike, compare the acceleration spike to a pattern indicative of contact with another object, and reduce the rate of rotation of rotors utilized by the UAV for flight based on the comparison of the acceleration spike to the pattern.
Abstract:
The present disclosure is directed toward systems and methods for enabling autonomous landing of an unmanned aerial vehicle. For example, systems and methods described herein enable autonomous landing of the unmanned aerial vehicle by providing an unmanned aerial vehicle ground station with various guidance systems for guiding the autonomous landing. In some embodiments, the guidance systems enable autonomous landing by providing one or more LEDs. In other embodiments, the guidance systems enable autonomous landing by providing various types of transmitted energy waves. In at least one embodiment, the guidance systems enable autonomous landing by providing a two-stage landing system that includes two or more types of transmitted energy.