Abstract:
A method, system, and apparatus for lift gas distribution are disclosed. According to one embodiment, a lift gas distributor comprises a plate having a surface and an underside, the plate having a first diameter; a center section of the plate having a second diameter, wherein the first diameter is larger than the second diameter; a predetermined number of holes having a third diameter drilled into the surface of the plate, the holes drilled at an angle, the holes evenly distributed in the center section; and a plurality of tubes welded onto the underside of the plate, each tube having a predetermined length, wherein each tube is welded onto each hole. Lift gas passes through the tubes and holes into a reactor.
Abstract:
The present invention discloses aqueous methods for enhancing the acid sites of fluid catalytic cracking (FCC) catalysts. The methods comprise the steps of contacting an FCC catalyst, either spent or fresh, with an aqueous solution comprising water, an inorganic acid substantially free of chloride and aluminum. The acid is preferably sulfurous or sulfuric acid. The aluminum is provided by an aluminum source selected from the group consisting of the alumina trihydrates and aluminum oxide. Chloride contamination of the aluminum source should be minimal, preferably less than about 1000 ppm chloride, more preferably less than about 200 ppm chloride. The pH of the aqueous solution is adjusted to about 3-12 by the addition of a sufficient quantity of ammonium hydroxide. The FCC catalyst is added to this solution, preferably with stirring, in a weight ratio of about 1 part catalyst to about 1-10 parts water to prepare an aqueous slurry. Upon stabilization of the pH of the aqueous slurry, enhancement of the acid sites of the catalyst is achieved and the catalyst may be separated from the slurry and, if desired, washed. This simple, aqueous process reduces the level of many metal poisons on the FCC catalyst and produces a catalyst having an enhanced number of acid reaction sites.
Abstract:
A method, system, and apparatus for separation in processing of feedstocks are disclosed. According to one embodiment, an apparatus comprises a tubular vessel having a square pipe entry and a vapor outlet, wherein the vapor outlet is positioned at the top of the tubular vessel, and wherein the square pipe entry is tangential to an inner diameter of the tubular vessel; a barrel positioned below the tubular vessel; and a double isolation knife valve positioned between the tubular vessel and the barrel, wherein a stream of gas and solids enters the tubular vessel through the square pipe entry, and wherein the gas and solids are separated by using centrifugal force, and wherein the gas exits the vapor outlet and the solids are collected in the barrel.
Abstract:
Improved reactor feed nozzles are disclosed. According to one embodiment, a feed nozzle comprises an inner tubing encased within an outer heat shield tubing, a first circular hole fabricated in the inner tubing, the first circular hole having a first diameter and serving as a discharge hole, a second circular hole fabricated in the outer heat shield tubing, the second circular hole having a second diameter, wherein the second diameter is larger than the first diameter; and a welded tip for extending a flow path at a declining angle, the welded tip having a section extending at a predetermined angle from the inner tubing to the discharge hole.
Abstract:
A method, system, and apparatus for separation in processing of feedstocks are disclosed. According to one embodiment, an apparatus comprises a tubular vessel having a square pipe entry and a vapor outlet, wherein the vapor outlet is positioned at the top of the tubular vessel, and wherein the square pipe entry is tangential to an inner diameter of the tubular vessel; a barrel positioned below the tubular vessel; and a double isolation knife valve positioned between the tubular vessel and the barrel, wherein a stream of gas and solids enters the tubular vessel through the square pipe entry, and wherein the gas and solids are separated by using centrifugal force, and wherein the gas exits the vapor outlet and the solids are collected in the barrel.
Abstract:
A method, system, and apparatus for lift gas distribution are disclosed. According to one embodiment, a lift gas distributor comprises a plate having a surface and an underside, the plate having a first diameter; a center section of the plate having a second diameter, wherein the first diameter is larger than the second diameter; a predetermined number of holes having a third diameter drilled into the surface of the plate, the holes drilled at an angle, the holes evenly distributed in the center section; and a plurality of tubes welded onto the underside of the plate, each tube having a predetermined length, wherein each tube is welded onto each hole. Lift gas passes through the tubes and holes into a reactor.
Abstract:
The present invention discloses aqueous methods for enhancing the acid sites of fluid catalytic cracking (FCC) catalysts. The methods comprise the steps of contacting an FCC catalyst, either spent or fresh, with an aqueous solution comprising water, and a source of both phosphorus and aluminum. Optionally the solution includes sulfurous or sulfuric acid. The phosphorus is provided by phosphoric acid, phosphorous acid or ammonium dihydrogen phosphate. The aluminum is provided by an aluminum source selected from the group consisting of the alumina trihydrates and aluminum oxide. Chloride contamination of the aluminum source should be minimal, preferably less than about 1000 ppm chloride, more preferably less than about 200 ppm chloride. The pH of the aqueous solution is adjusted to about 3-12 by the addition of a sufficient quantity of an aqueous ammonium solution. The FCC catalyst is added to this solution, preferably with stirring, in a weight ratio of about 1 part catalyst to about 1-10 parts water to prepare an aqueous slurry. Upon stabilization of the pH of the aqueous slurry, enhancement of the acid sites of the catalyst is achieved and the catalyst may be separated from the slurry and, if desired, washed. This simple, aqueous process reduces the level of many metal poisons, including nickel and vanadium, on the FCC catalyst and produces a catalyst having an enhanced number of acid reaction sites.