Abstract:
The present invention provides a sound attenuator for pneumatic exhaust that includes a body having an open end and an inner cavity defined by an inner wall, an inlet port provided in the body adapted to establish fluid communication between a source of pneumatic exhaust and the inner cavity, a cap releasably connected to the body to cover the open end, at least one exit port in fluid communication with the inner cavity, a plurality of baffles arranged within the inner cavity so as to define a series of sequential closed chambers between the inlet port and the exit port, and a deflector proximal to the exit port, the deflector redirecting the flow of pneumatic exhaust at least 90° and cooperating with an exterior surface of the body to define an expansion zone. Each of the baffles has a periphery in contact with the inner wall and is adapted to flex under a predetermined pneumatic pressure load to permit the pneumatic exhaust to flow between the periphery and the inner wall of the body. A sound attenuator according to the invention attenuates the sound of pneumatic exhaust to safe levels, will not clog or plug easily, does not create excessive back pressure, resists freezing and icing, and provides a controlled discharge pattern of pneumatic exhaust.
Abstract:
A modular check valve system includes a plurality of modular check valves all having a common stack height. The common stack height allows for a substitution of individual valve modules. The substitution capability provides an economical way to increase or decrease the flow area through the valve assembly by varying size of the ball within the check valve. Thus, the specifications of the pump can be relatively easily changed, either at the factory or in the field. The modular construction also permits the use of different types of valves (e.g. flap valves, poppets, duckbills, or trihedrals) without having to change any additional pump fittings. In one embodiment, the modular valve system of the present invention is described in conjunction with a pump having at least one fluid communication fitting adapted to receive a check valve assembly. A fluid passage adjacent to, and adapted for a fluid communication with, the fitting includes a terminal end spaced a predetermined distance from the fitting, to define a predetermined dimensional envelope. A plurality of ball check valves having different sized ball valve elements contained therein is provided. Each of the valves includes a valve housing having a stack height and exterior cross section corresponding to the predetermined dimensional envelope. Any one of the plurality of valves can be secured in the predetermined dimensional envelope to determine the flow velocity and flow area of fluid passing through the pump.
Abstract:
A fluid diaphragm pump is provided with a means for controlling the flowrate of fluid to the main fluid valve. Specifically, in the main fluid valve, a sleeve accommodates a sliding spool. The sleeve may include control orifices disposed at either end of the sleeve for controlling the flowrate of fluid past the spool to the outlet of the main fluid valve. The pilot valve housing may also include removable inserts for regulating the flow of fluid to the inlet side of the main fluid valve which results in a restriction of the flowrate of fluid to the main fluid valve. In both embodiments, the flowrate can be changed by either changing one or more components of the sleeve to increase or decrease the diameter of the control orifices or by removing the inserts in the pilot valve housing to either increase or decrease the diameter of the control orifices defined in by the inserts.
Abstract:
A three-piece combination spacer and shim assembly is provided for an air operated diaphragm pump. The spacer/shim assembly is disposed between adjacent parts of the manifold assemblies of the pumps to alleviate dimensional stack up and misalignment problems associated with the manifold assemblies of air operated diaphragm pumps. The assemblies provide a seal between the spacer component and the adjoining flanges of the manifold components.
Abstract:
A composite flexible diaphragm for a diaphragm pump. The diaphragm has a diaphragm body with an outer perimeter, a center axis, and first and second exterior surfaces. The body has a perimeter flange portion extending around the body adjacent the outer perimeter. The body also has a disc portion extending radially outward from the center axis. The body has a convoluted flex portion disposed between the perimeter flange portion and the disc portion. The composite flexible diaphragm has a first layer of a chemically resistant material defining the first exterior surface. The diaphragm also has a second layer of flexible material which is bonded to the first layer and defines the second exterior surface of the diaphragm. The first layer of chemically resistant material has a reduced material thickness in the area of the flex portion of the diaphragm body.
Abstract:
A pump control interface for use in a diaphragm pump including at least one diaphragm adapted to move between a suction stroke and a discharge stroke during operation of the pump. A diaphragm follower is connected for movement with the diaphragm during operation of the pump. A sensor mechanism is provided for sensing at least the position and rate of movement of the diaphragm by sensing the position and rate of movement of the diaphragm follower. In one embodiment, the control interface is provided as a rod interconnecting two diaphragms of a dual diaphragm pump for synchronous movement. A plurality of conductive targets are disposed on the rod, and a proximity switch is mounted adjacent to the rod, in order to produce pulsed output signals when in proximity with the conductive targets.
Abstract:
A fluid powered diaphragm pump is provided which includes three means for supplementing the pilot valve signal to the main fluid valve spool. The means include a cross porting of the main fluid valve spool, or engineered orifices that communicate pressurized air being delivered to one of the inner diaphragm chambers of the pump to the main fluid valve spool by way of either the intermediate bracket or the pilot valve housing. Design features also include the location of the pilot valve assembly immediately below the pressurized fluid inlet cap and between the inlet cap and the main fluid valve assembly. Further, an integrated exhaust muffler is mounted directly to the main fluid valve housing and the main fluid valve housing includes a segmented sleeve assembly which makes it easier to service the main fluid valve assembly and, specifically, the main fluid valve spool. Further, proximity sensors are provided at either end of the main fluid valve spool and an interface is provided to connect the pump to electronic monitoring equipment.
Abstract:
A governor for fluid powered diaphragm pumps is shown and described. At least one pump member or oscillatory member moves in response to the varying pressures in the inner chambers of the diaphragm pump. Thus, each pump member or oscillatory member moves at the frequency at which the pump operates. Each pump member pumps fluid through a hydraulic circuit. The fluid flowing through the hydraulic circuit moves a flow regulator disposed in the line that provides communication between the air or power fluid supply and the main air valve or main valve with a pump. In the event the pump operates too fast or at too high a frequency, the pump member or members will pump hydraulic fluid through the circuit at a sufficient flowrate so as to move the flow regulator to a position where it reduces the flow rate of power fluid to the main valve of the pump. In the event the pump is operating too slow or at too low a frequency, the flowrate of hydraulic fluid in the circuit will consequently be reduced and the flow regulator will be biased towards an open position thereby increasing the rate of flow of power fluid to the main valve of the pump. Manual control of the flowrate through the hydraulic circuit, and therefore manual control of the flow regulator, is also provided.