Abstract:
A Virtual-Memory Device (VMD) driver and application execute on a host to increase endurance of flash memory attached to a Super Enhanced Endurance Device (SEED) or Solid-State Drive (SSD). Host accesses to flash are intercepted by the VMD driver using upper and lower-level filter drivers and categorized as data types of paging files, temporary files, meta-data, and user data files, using address ranges and file extensions read from meta-data tables. Paging files and temporary files are optionally written to flash. Full-page and partial-page data are grouped into multi-page meta-pages by data type before storage by the SSD. Ramdisks and caches for storing each data type in the host DRAM are managed and flushed to the SSD by the VMD driver. Write dates are stored for pages or blocks for management functions. A spare/swap area in DRAM reduces flash wear. Reference voltages are adjusted when error correction fails.
Abstract:
A Green NAND Device (GND) driver application queries AC line and battery status and then stores an image of processor states and caches and a resume routine to DRAM when power failure occurs. A DRAM image is then stored to flash memory for a persistent mode when battery power is available. The image in DRAM may be a partial image that includes entries, flushed caches, processor contexts, ramdisks, write caches, and a resume context. Endurance of flash memory is increased by a Super Enhanced Endurance Device (SEED) SSD. In a power down mode, the GND driver limits DRAM use and only caches in DRAM data that can be deleted on power down. Host accesses to flash are intercepted by the GND driver and categorized by data type. Paging files and temporary files cached in DRAM are optionally written to flash.
Abstract:
A Virtual-Memory Device (VMD) driver and application execute on a host to increase endurance of flash memory attached to a Super Enhanced Endurance Device (SEED) or Solid-State Drive (SSD). Host accesses to flash are intercepted by the VMD driver using upper and lower-level filter drivers and categorized as data types of paging files, temporary files, meta-data, and user data files, using address ranges and file extensions read from meta-data tables. Paging files and temporary files are optionally written to flash. Full-page and partial-page data are grouped into multi-page meta-pages by data type before storage by the SSD. ramdisks and caches for storing each data type in the host DRAM are managed and flushed to the SSD by the VMD driver. Write dates are stored for pages or blocks for management functions. A spare/swap area in DRAM reduces flash wear. Reference voltages are adjusted when error correction fails.
Abstract:
A Virtual-Memory Device (VMD) driver and application execute on a host to increase endurance of flash memory attached to a Super Enhanced Endurance Device (SEED) or Solid-State Drive (SSD). Host accesses to flash are intercepted by the VMD driver using upper and lower-level filter drivers and categorized as data types of paging files, temporary files, meta-data, and user data files, using address ranges and file extensions read from meta-data tables. Paging files and temporary files are optionally written to flash. Full-page and partial-page data are grouped into multi-page meta-pages by data type before storage by the SSD. Ramdisks and caches for storing each data type in the host DRAM are managed and flushed to the SSD by the VMD driver. Write dates are stored for pages or blocks for management functions. A spare/swap area in DRAM reduces flash wear. Reference voltages are adjusted when error correction fails.
Abstract:
A Green NAND Device (GND) driver application queries AC line and battery status and then stores an image of processor states and caches and a resume routine to DRAM when power failure occurs. A DRAM image is then stored to flash memory for a persistent mode when battery power is available. The image in DRAM may be a partial image that includes entries, flushed caches, processor contexts, ramdisks, write caches, and a resume context. Endurance of flash memory is increased by a Super Enhanced Endurance Device (SEED) SSD. In a power down mode, the GND driver limits DRAM use and only caches in DRAM data that can be deleted on power down. Host accesses to flash are intercepted by the GND driver and categorized by data type. Paging files and temporary files cached in DRAM are optionally written to flash.
Abstract:
A Green NAND Device (GND) driver application queries AC line and battery status and then stores an image of processor states and caches and a resume routine to DRAM when power failure occurs. A DRAM image is then stored to flash memory for a persistent mode when battery power is available. The image in DRAM may be a partial image that includes entries, flushed caches, processor contexts, ramdisks, write caches, and a resume context. Endurance of flash memory is increased by a Super Enhanced Endurance Device (SEED) SSD. In a power down mode, the GND driver limits DRAM use and only caches in DRAM data that can be deleted on power down. Host accesses to flash are intercepted by the GND driver and categorized by data type. Paging files and temporary files cached in DRAM are optionally written to flash.
Abstract:
A Green NAND Device (GND) driver application queries AC line and battery status and then stores an image of processor states and caches and a resume routine to DRAM when power failure occurs. A DRAM image is then stored to flash memory for a persistent mode when battery power is available. The image in DRAM may be a partial image that includes entries, flushed caches, processor contexts, ramdisks, write caches, and a resume context. Endurance of flash memory is increased by a Super Enhanced Endurance Device (SEED) SSD. In a power down mode, the GND driver limits DRAM use and only caches in DRAM data that can be deleted on power down. Host accesses to flash are intercepted by the GND driver and categorized by data type. Paging files and temporary files cached in DRAM are optionally written to flash.
Abstract:
A Virtual-Memory Device (VMD) driver and application execute on a host to increase endurance of flash memory attached to a Super Enhanced Endurance Device (SEED) or Solid-State Drive (SSD). Host accesses to flash are intercepted by the VMD driver using upper and lower-level filter drivers and categorized as data types of paging files, temporary files, meta-data, and user data files, using address ranges and file extensions read from meta-data tables. Paging files and temporary files are optionally written to flash. Full-page and partial-page data are grouped into multi-page meta-pages by data type before storage by the SSD. ramdisks and caches for storing each data type in the host DRAM are managed and flushed to the SSD by the VMD driver. Write dates are stored for pages or blocks for management functions. A spare/swap area in DRAM reduces flash wear. Reference voltages are adjusted when error correction fails.