Abstract:
The disclosure concerns an antenna with open loops and multipath current distribution to achieve ultra wideband characteristics and antenna miniaturization, while simultaneously keeping high performance for a more reliable WAN communication, with higher data transfer, less dropping connections and improved sensitivity. To further reduce spatial requirements, the antenna may be incorporated on a flex substrate for bending with the contour of a device housing or the like.
Abstract:
A planar monopole antenna for dual-band Wi-Fi application is disclosed. The antenna has a ground copper and a radiation copper. The radiation copper is adhered to a substrate and has a conductive layer attached to a first surface of the substrate wherein the conductive layer further comprises a first radiation control section operating at a first bandwidth and connected in series via a central post with a second radiation control section operating at a second bandwidth different than the first bandwidth, and a ground section having a rectangularly-shaped pattern with a U-shaped opening at one end thereof positioned around a portion of the second radiation control section, wherein the planar antenna has a current distribution that is higher along the central post and a squared end of the rectangularly shaped ground section. Reception of the radiation copper into the opening of the ground copper forms an U-shaped separation that is approximately 0.6 mm wide. The antenna has a gross span of approximately 45 mm and a width of approximately 7 mm.
Abstract:
The disclosure concerns an antenna with open loops and multipath current distribution to achieve ultra wideband characteristics and antenna miniaturization, while simultaneously keeping high performance for a more reliable WAN communication, with higher data transfer, less dropping connections and improved sensitivity. To further reduce spatial requirements, the antenna may be incorporated on a flex substrate for bending with the contour of a device housing or the like.
Abstract:
A system and method are disclosed which may comprise a composite resonating antenna structure which may comprise: a first substrate comprising a first portion of a flexible substrate comprising a first conductive layer forming a first resonating element on the first portion of a flexible substrate; a second substrate connected to a second portion of the flexible substrate to form a transition, with the first portion of the flexible substrate and the second substrate generally orthogonal to each other; and a second conductive layer attached to a third substrate, the second conductive layer shaped to include a ground plane section and a signal transmission line carrying microwave frequency signals including a center frequency; wherein the first resonating element radiates a frequency equal to the center frequency based on first portion of the flexible substrate and the third substrate being generally orthogonal to each other.