Methods and systems for adaptive pedestrian inertial navigation

    公开(公告)号:US12215975B2

    公开(公告)日:2025-02-04

    申请号:US17395706

    申请日:2021-08-06

    Abstract: Processes and systems for adaptive pedestrian inertial navigation are provided. Configurations can adjust to various navigation scenarios, including different floor types and different gait paces. A combination of IMU data partition, principal component analysis (PCA), and artificial neural network may be used to perform the floor type detection. Floor type results may be used in the multiple-model extended Kalman filter. In each extended Kalman filter, an adaptive threshold is used for the stance phase detection to enable the detector to adjust to gait frequency without tuning design parameters during navigation. A floor type classification of high accuracy is demonstrated, and the position error in a velocity-changing navigation system using adaptive threshold is reduced.

    Three-Dimensional Wafer-Scale Batch-Micromachined Sensor and Method of Fabrication for the Same
    2.
    发明申请
    Three-Dimensional Wafer-Scale Batch-Micromachined Sensor and Method of Fabrication for the Same 审中-公开
    三维晶圆分批微加工传感器及其制作方法

    公开(公告)号:US20130214461A1

    公开(公告)日:2013-08-22

    申请号:US13847624

    申请日:2013-03-20

    CPC classification number: G01C19/56 B29C44/02 B29C44/022 G01C19/5691

    Abstract: A vibratory sensor is fabricated as a three-dimensional batch-micromachined shell adapted to vibrate and support elastic wave propagation and wave precession in the shell or membrane and at least one driving electrode and preferably a plurality of driving electrodes directly or indirectly coupled to the shell to excite and sustain the elastic waves in the shell. The pattern of elastic waves is determined by the configuration of the driving electrode(s). At least one sensing electrode and preferably a plurality of sensing electrodes are provided to detect the precession of the elastic wave pattern in the shell. The rotation of the shell induces precession of the elastic wave pattern in the shell which is usable to measure the rotation angle or rate of the vibratory sensor.

    Abstract translation: 制造振动传感器作为三维批量微机械加工的壳体,其适于振动并支撑壳体或膜中的弹性波传播和波形进动,以及至少一个驱动电极,优选地多个驱动电极直接或间接耦合到壳体 激发和维持壳中的弹性波。 弹性波的图案由驱动电极的结构决定。 提供至少一个感测电极和优选地多个感测电极以检测壳体中的弹性波形图案的进动。 壳体的旋转引起壳体中的弹性波纹的进动,其可用于测量振动传感器的旋转角度或速率。

    METHOD OF FABRICATING MICRO-GLASSBLOWN GYROSCOPES
    4.
    发明申请
    METHOD OF FABRICATING MICRO-GLASSBLOWN GYROSCOPES 审中-公开
    制作微玻璃珠光体的方法

    公开(公告)号:US20170016742A1

    公开(公告)日:2017-01-19

    申请号:US14548237

    申请日:2014-11-19

    CPC classification number: G01C25/00 G01C19/5691

    Abstract: A method of making a Coriolis vibratory gyroscope with a three dimensional mushroom resonator element includes defining a cavity in a substrate wafer; bonding a cap wafer onto the substrate over the cavity from which cap wafer the resonator element will be formed; heating the substrate and cap wafer to generate a pressure build-up within the cavity; plastically deforming the cap wafer by the pressure build-up to form the mushroom resonator element having a perimeter around the mushroom resonator element; releasing the three dimensional mushroom resonator element at the perimeter by selectively removing material so that the perimeter of mushroom resonator element is free to vibrate; and disposing a layer of conductive material on the mushroom resonator element to form electrodes thereon for use in driving and sensing vibrations of the mushroom resonator element and its perimeter. A microgyroscope made by such a method is also included within the embodiments.

    Abstract translation: 制造具有三维蘑菇谐振器元件的科里奥利振动陀螺仪的方法包括在衬底晶片中限定空腔; 将覆盖晶片结合到衬底上方,该谐振器元件将从该晶圆形成; 加热衬底和盖子晶片以在空腔内产生压力积聚; 通过压力积聚使盖晶片塑性变形,以形成具有围绕蘑菇谐振器元件的周边的伞形谐振元件; 通过选择性地去除材料以使得蘑菇谐振器元件的周边自由振动而在周边释放三维蘑菇谐振器元件; 以及在所述蘑菇谐振器元件上设置一层导电材料以在其上形成用于驱动和感测所述蘑菇谐振器元件及其周边的振动的电极。 通过这种方法制造的微型陀螺仪也包括在实施例中。

    FULLY BALANCED MICRO-MACHINED INERTIAL SENSOR
    5.
    发明申请
    FULLY BALANCED MICRO-MACHINED INERTIAL SENSOR 审中-公开
    全平衡微机械惯性传感器

    公开(公告)号:US20160084654A1

    公开(公告)日:2016-03-24

    申请号:US14863172

    申请日:2015-09-23

    CPC classification number: G01C19/5747 G01C19/5726

    Abstract: The improvement includes an outer proof mass having a corresponding center of mass; and an inner proof mass having a corresponding center of mass, where the corresponding centers of mass of the outer proof mass and the inner proof mass are approximately co-located. Thus, a double Foucault pendulum is essentially provided in a micromachined gyroscope.

    Abstract translation: 该改进包括具有相应质心的外部检验质量块; 以及具有对应质心的内部检验质量块,其中外部质量块和内部质量质量的相应质心大致相同。 因此,基本上在微加工陀螺仪中提供了双重福柯摆。

    Axi-Symmetric Small-Footprint Gyroscope with Interchangeable Whole-Angle and Rate Operation
    6.
    发明申请
    Axi-Symmetric Small-Footprint Gyroscope with Interchangeable Whole-Angle and Rate Operation 审中-公开
    具有可互换的全角度和速率操作的Axi对称小尺寸陀螺仪

    公开(公告)号:US20150354959A1

    公开(公告)日:2015-12-10

    申请号:US14734794

    申请日:2015-06-09

    CPC classification number: G01C19/5684

    Abstract: A toroidal ring gyroscope with a robust outer perimeter anchor and a distributed suspension system. The vibrational energy in the design is concentrated towards the innermost ring, and the device is anchored at the outer perimeter. The distributed support structure prevents vibrational motion propagating to the outer anchor, which helps trap the vibrational energy within the gyroscope and provides a Q-factor of >100,000 at a compact size of 1760 μm. Due to the parametric pumping effect, energy added to each mode is proportional to the existing amplitude of the respective mode. As a result, errors associated with finding the orientation of the standing wave and x-y drive gain drift are bypassed. The toroidal ring gyroscope can be fabricated using any standard silicon on insulator process. Due to the high Q-factor and robust support structure, the device can potentially be instrumented in high-g environments that require high angular rate sensitivity.

    Abstract translation: 环形环形陀螺仪,具有坚固的外周边锚和分布式悬挂系统。 设计中的振动能量集中在最内圈,并且该装置被固定在外周。 分布式支撑结构防止振动运动传播到外部锚固器,这有助于捕获陀螺仪内的振动能量,并在1760μm的紧凑尺寸下提供> 100,000的Q因子。 由于参数泵送效应,加到每个模式的能量与相应模式的现有幅度成比例。 结果,绕过与寻找驻波方向和x-y驱动增益漂移有关的误差。 环形环形陀螺仪可以使用任何标准的绝缘体上硅工艺制造。 由于高Q因子和坚固的支撑结构,该器件可能会在需要高角速率灵敏度的高g环境中进行测量。

    LEVER MECHANISMS FOR ANTI-PHASE MODE ISOLATION IN MEMS TUNING-FORK STRUCTURES
    7.
    发明申请
    LEVER MECHANISMS FOR ANTI-PHASE MODE ISOLATION IN MEMS TUNING-FORK STRUCTURES 有权
    用于MEMS调谐结构中的相位模式隔离的杠杆机制

    公开(公告)号:US20140260615A1

    公开(公告)日:2014-09-18

    申请号:US13840362

    申请日:2013-03-15

    Abstract: A MEMS resonator includes two resonating masses having an anti-phase and in-phase resonance mode, each mode having a resonance frequency, and an anti-phase resonance levering system coupled to the two resonating masses to stiffen and/or dampen the in-phase resonance mode while leaving the anti-phase resonance mode compliant. This effectively raises the in-phase resonance frequency above the anti-phase resonance frequency, and potentially creates a large frequency separation between the two resonance modes. This reduces the energy transfer between the two modes, allowing for robustness to external acceleration, because the in-phase mode is of a higher frequency. The anti-phase resonance levering system is disposed between the two resonating masses as an internal levering mechanism, or is disposed around the two resonating masses as an external levering mechanism.

    Abstract translation: MEMS谐振器包括具有反相和同相谐振模式的两个谐振块,每个模式具有谐振频率,以及耦合到两个谐振块的反相谐振杠杆系统以加固和/或抑制同相 同时保持反相谐振模式的兼容性。 这有效地提高了高于反相谐振频率的同相谐振频率,并且潜在地在两个谐振模式之间产生大的频率间隔。 这降低了两种模式之间的能量传递,从而允许对外部加速度的鲁棒性,因为同相模式具有较高的频率。 反相谐振杠杆系统设置在作为内部杠杆机构的两个谐振块之间,或者作为外部杠杆机构设置在两个谐振块周围。

    Multi-Axis Chip-Scale MEMS Inertial Measurement Unit (IMU) Based on Frequency Modulation
    9.
    发明申请
    Multi-Axis Chip-Scale MEMS Inertial Measurement Unit (IMU) Based on Frequency Modulation 审中-公开
    基于频率调制的多轴芯片级MEMS惯性测量单元(IMU)

    公开(公告)号:US20160169935A1

    公开(公告)日:2016-06-16

    申请号:US15048763

    申请日:2016-02-19

    Abstract: A multi-axis microelectromechanical-systems (MEMS) inertial measurement unit (IMU) is fabricated in a vacuum sealed single packaged device. An FM vibratory gyroscope and an FM resonant accelerometer both for generating FM output signals is fabricated in the silicon chip using MEMS. A signal processor is coupled to the an FM vibratory gyroscope and to the FM resonant accelerometer for receiving the FM gyroscopic output signals and the FM accelerometer output signals. The signal processor generates simultaneous and decoupled measurement of input acceleration, input rotation rate, and temperature and/or temperature distribution within the IMU, self-calibration of the biases and scale factors of the IMU and its support electronics against temperature variations and other common mode errors, and reduction of the cross axis sensitivity by reducing acceleration errors in the gyroscope and rotation errors in the accelerometer.

    Abstract translation: 在真空密封的单一封装装置中制造多轴微机电系统(MEMS)惯性测量单元(IMU)。 用于产生FM输出信号的FM振动陀螺仪和FM谐振加速度计使用MEMS制造在硅芯片中。 信号处理器耦合到FM振动陀螺仪和FM谐振加速度计,用于接收FM陀螺仪输出信号和FM加速度计输出信号。 信号处理器产生输入加速度,输入旋转速率以及IMU内的温度和/或温度分布的同时和去耦测量,对IMU及其支持电子器件的温度变化和其他共模的偏差和比例因子进行自校准 误差,减少陀螺仪中的加速度误差和加速度计中的旋转误差来降低交叉轴灵敏度。

    Multi-axis chip-scale MEMS inertial measurement unit (IMU) based on frequency modulation
    10.
    发明授权
    Multi-axis chip-scale MEMS inertial measurement unit (IMU) based on frequency modulation 有权
    基于频率调制的多轴芯片级MEMS惯性测量单元(IMU)

    公开(公告)号:US09274136B2

    公开(公告)日:2016-03-01

    申请号:US13752044

    申请日:2013-01-28

    Abstract: A multi-axis microelectromechanical-systems (MEMS) inertial measurement unit (IMU) is fabricated in a vacuum sealed single packaged device. An FM vibratory gyroscope and an FM resonant accelerometer both for generating FM output signals is fabricated in the silicon chip using MEMS. A signal processor is coupled to the an FM vibratory gyroscope and to the FM resonant accelerometer for receiving the FM gyroscopic output signals and the FM accelerometer output signals. The signal processor generates simultaneous and decoupled measurement of input acceleration, input rotation rate, and temperature and/or temperature distribution within the IMU, self-calibration of the biases and scale factors of the IMU and its support electronics against temperature variations and other common mode errors, and reduction of the cross axis sensitivity by reducing acceleration errors in the gyroscope and rotation errors in the accelerometer.

    Abstract translation: 在真空密封的单一封装装置中制造多轴微机电系统(MEMS)惯性测量单元(IMU)。 用于产生FM输出信号的FM振动陀螺仪和FM谐振加速度计使用MEMS制造在硅芯片中。 信号处理器耦合到FM振动陀螺仪和FM谐振加速度计,用于接收FM陀螺仪输出信号和FM加速度计输出信号。 信号处理器产生输入加速度,输入旋转速率以及IMU内的温度和/或温度分布的同时和去耦测量,对IMU及其支持电子器件的温度变化和其他共模的偏差和比例因子进行自校准 误差,减少陀螺仪中的加速度误差和加速度计中的旋转误差来降低交叉轴灵敏度。

Patent Agency Ranking