Abstract:
A microfluidic apparatus and methods for fabrication with a fluidic layer and a pattern layer of spots of concentrated reagents that are disposed in wells of a fluidic layer when the two layers are bonded together. Reagents are stored on the chip prior to use. Because reagents are confined to specific wells, contamination of the channels and other microfluidic structures of the fluidic layer are avoided. The fluidic layer also has a system of vacuum channels and at least one vacuum void to store vacuum potential for controlled micro-fluidic pumping. The top and bottom surfaces of the bonded layers are sealed. The chip can be used for point of care diagnostic assays such as quantitative testing, digital nucleic acid amplification, and biochemical testing such as immunoassays and chemistry testing.
Abstract:
A fluidic chip employing a vacuum void to store vacuum potential for controlled micro-fluidic pumping in conjunction with biomimetic vacuum lungs.
Abstract:
A Digital Separation (DS) chip for separating, digitizing and analyzing a fluid sample is presented. The DS chip includes a fluidic layer that prepares and compartmentalizes the fluid sample for analysis. Cliff structures that are adjacent to wells skim the fluid sample and prevent particles, which may interfere with fluid sample analysis, from entering the wells. Skimmed fluid sample analysis occurs in the wells and endpoint data can be collected and used to determine an original concentration of a desired component in the fluid sample very quickly. Using the described apparatus and methods, a fluid sample can be prepared, digitized, compartmentalized, assayed and the endpoint data collected in ˜30 minutes. The apparatus and methods can easily be adapted to provide parallel processing of a sample.
Abstract:
A Digital Separation (DS) chip for separating, digitizing and analyzing a fluid sample is presented. The DS chip includes a fluidic layer that prepares and compartmentalizes the fluid sample for analysis. Cliff structures that are adjacent to wells skim the fluid sample and prevent particles, which may interfere with fluid sample analysis, from entering the wells. Skimmed fluid sample analysis occurs in the wells and endpoint data can be collected and used to determine an original concentration of a desired component in the fluid sample very quickly. Using the described apparatus and methods, a fluid sample can be prepared, digitized, compartmentalized, assayed and the endpoint data collected in ˜30 minutes. The apparatus and methods can easily be adapted to provide parallel processing of a sample.
Abstract:
A fluidic chip employing a vacuum void to store vacuum potential for controlled micro-fluidic pumping in conjunction with biomimetic vacuum lungs.
Abstract:
A fluidic chip employing a vacuum void to store vacuum potential for controlled micro-fluidic pumping in conjunction with biomimetic vacuum lungs.