Apparatus and Methods for Fluorescence Imaging Using Radiofrequency-Multiplexed Excitation

    公开(公告)号:US20230052995A1

    公开(公告)日:2023-02-16

    申请号:US17745206

    申请日:2022-05-16

    Abstract: Apparatus and methods for fluorescence imaging using radiofrequency multiplexed excitation. One apparatus splits an excitation laser beam into two arms of a Mach-Zehnder interferometer. The light in the first beam is frequency shifted by an acousto-optic deflector, which is driven by a phase-engineered radiofrequency comb designed to minimize peak-to-average power ratio. This RF comb generates multiple deflected optical beams possessing a range of output angles and frequency shifts. The second beam is shifted in frequency using an acousto-optic frequency shifter. After combining at a second beam splitter, the two beams are focused to a line on the sample using a conventional laser scanning microscope lens system. The acousto-optic deflectors frequency-encode the simultaneous excitation of an entire row of pixels, which enables detection and de-multiplexing of fluorescence images using a single photomultiplier tube and digital phase-coherent signal recovery techniques.

    Apparatus and methods for fluorescence imaging using radiofrequency-multiplexed excitation

    公开(公告)号:US11371937B2

    公开(公告)日:2022-06-28

    申请号:US16528463

    申请日:2019-07-31

    Abstract: Apparatus and methods for fluorescence imaging using radiofrequency multiplexed excitation. One apparatus splits an excitation laser beam into two arms of a Mach-Zehnder interferometer. The light in the first beam is frequency shifted by an acousto-optic deflector, which is driven by a phase-engineered radiofrequency comb designed to minimize peak-to-average power ratio. This RF comb generates multiple deflected optical beams possessing a range of output angles and frequency shifts. The second beam is shifted in frequency using an acousto-optic frequency shifter. After combining at a second beam splitter, the two beams are focused to a line on the sample using a conventional laser scanning microscope lens system. The acousto-optic deflectors frequency-encode the simultaneous excitation of an entire row of pixels, which enables detection and de-multiplexing of fluorescence images using a single photomultiplier tube and digital phase-coherent signal recovery techniques.

    Apparatus and methods for fluorescence imaging using radiofrequency-multiplexed excitation

    公开(公告)号:US11327016B2

    公开(公告)日:2022-05-10

    申请号:US16528436

    申请日:2019-07-31

    Abstract: Apparatus and methods for fluorescence imaging using radiofrequency multiplexed excitation. One apparatus splits an excitation laser beam into two arms of a Mach-Zehnder interferometer. The light in the first beam is frequency shifted by an acousto-optic deflector, which is driven by a phase-engineered radiofrequency comb designed to minimize peak-to-average power ratio. This RF comb generates multiple deflected optical beams possessing a range of output angles and frequency shifts. The second beam is shifted in frequency using an acousto-optic frequency shifter. After combining at a second beam splitter, the two beams are focused to a line on the sample using a conventional laser scanning microscope lens system. The acousto-optic deflectors frequency-encode the simultaneous excitation of an entire row of pixels, which enables detection and de-multiplexing of fluorescence images using a single photomultiplier tube and digital phase-coherent signal recovery techniques.

    Parallel Flow Cytometer Using Radiofrequency Multiplexing

    公开(公告)号:US20220178813A1

    公开(公告)日:2022-06-09

    申请号:US17666841

    申请日:2022-02-08

    Abstract: An imaging flow cytometry apparatus and method which allows registering multiple locations across a cell, and/or across multiple flow channels, in parallel using radio-frequency-tagged emission (FIRE) coupled with a parallel optical detection scheme toward increasing analysis throughput. An optical source is modulated by multiple RF frequencies to produce an optical interrogation beam having a spatially distributed beat frequency. This beam is directed to one or more focused streams of cells whose responsive fluorescence, in different frequencies, is registered in parallel by an optical detector.

    Parallel Flow Cytometer Using Radiofrequency Multiplexing

    公开(公告)号:US20210255088A1

    公开(公告)日:2021-08-19

    申请号:US17068573

    申请日:2020-10-12

    Abstract: An imaging flow cytometry apparatus and method which allows registering multiple locations across a cell, and/or across multiple flow channels, in parallel using radio-frequency-tagged emission (FIRE) coupled with a parallel optical detection scheme toward increasing analysis throughput. An optical source is modulated by multiple RF frequencies to produce an optical interrogation beam having a spatially distributed beat frequency. This beam is directed to one or more focused streams of cells whose responsive fluorescence, in different frequencies, is registered in parallel by an optical detector.

Patent Agency Ranking