Abstract:
This disclosure provides a process based on hydrothermal liquefaction (HTL) treatment for co-processing of high-water-content wastewater sludge and other lignocellulosic biomass for co-production of biogas and bio-crude oil. The mixture of waste activated sludge and lignocellulosic biomass such as birchwood sawdust/cornstalk/MSW was converted under HTL conditions in presence of KOH as the homogeneous catalyst. The operating conditions including reaction temperature, reaction time and solids concentration were optimized based on the response surface methodology for the maximum bio-crude oil production. The highest bio-crude oil yield of around 34 wt % was obtained by co-feeding waste activated sludge with lignocellulosic biomass at an optimum temperature of 310° C., reaction time of 10 min, and solids concentration of 10 wt %. The two by-products from this process (bio-char and water-soluble products) can be used to produce energy as well. Water-soluble products were used to produce biogas through Bio-methane Potential Test (BMP) and were found to produce around 800 mL bio-methane cumulatively in 30 days per 0.816 g of total organic carbon (TOC) or 2.09 g of chemical oxygen demand (COD) of water-soluble products.
Abstract:
A resin composition containing the reaction product of a 5-hydroxymethyl furfural (HMF) produced in-situ from e.g., glucose and a phenolic compound. Phenolic compounds include phenol, cardanol and bio-phenol. The resin is heat-curable using cross-linking agents such as tetraethylammonium chloride or lignin, etc.
Abstract:
The disclosed invention is a process for liquefaction of hydrolysis residue of lignocellulosic biomass, original lignocellulosic biomass or municipal solid waste in alcohol-water media at alkaline conditions, for the production of low-Mw bio-oils. The disclosed process is characterized in that it works for the direct liquefaction of the biomass, and operates under mild conditions (
Abstract:
Disclosed is a cost-effective process for catalytic conversion of simple C6-based sugars (such as glucose and fructose) and industrial-grade sugar syrups derived from starch (such as different grades of High Fructose Corn Syrup) and cellulosic biomass to 5-HydroxyMethylFurfural (5-HMF) in a continuous-flow tubular reactor in bi-phasic media using inexpensive heterogeneous solid catalysts. Commercial and synthesized heterogeneous solid catalysts were used and their activities in terms of sugar conversion and HMF selectivity and yield were compared. Continuous dehydration of fructose, glucose and industrial-grade sugar syrups derived from corn and wood to HMF was achieved and the stability of selected catalysts and feasibility of catalyst recycling and regeneration were demonstrated. The performance of the catalysts and reactor system were examined under different operating conditions including reaction temperature, feeding flow rate, initial feedstock concentration, catalyst loading, presence of extracting organic solvent and phase transfer catalyst and aqueous to organic phase ratio. At the best operating conditions, HMF yield attained 60%, 45% and 53%, from dehydration of fructose, glucose and HFCS-90, respectively.