Abstract:
Provided is a liquid crystal polyester fiber having high strength, high elastic modulus, high abrasion resistance, excellent processability, and little thermal deformation at high temperature, and also provided is a production method thereof. A liquid crystal polyester fiber, characterized in that the peak half-value width of the endothermic peak (Tm1) observed when measuring by differential calorimetry under rising temperature conditions starting at 50° C. and increasing 20° C./min is 15° C. or higher, the polystyrene-converted weight-average molecular weight is between 250,000 and 2,000,000 inclusive, the peak temperature of the loss tangent (tan δ) is between 100° C. and 200° C. inclusive, and the peak value of the loss tangent (tan δ) is between 0.060 and 0.090 inclusive. A mesh fabric comprising the liquid crystal polyester fiber. A production method for melt liquid crystal polyester fiber, characterized in that liquid crystal polyester fiber obtained by melt-spinning is subject to solid-phase polymerization, and subsequently heat treated at a stretch ratio of at least 0.1% and under 3.0% at a temperature at least 50° C. higher than the endothermic peak temperature (Tm1) as observed when measuring by differential calorimetry under rising temperature conditions starting at 50° C. and increasing 20° C./min.
Abstract:
Provided is a liquid crystal polyester fiber having high strength, high elastic modulus, high abrasion resistance, excellent processability, and little thermal deformation at high temperature, and also provided is a production method thereof. A liquid crystal polyester fiber, characterized in that the peak half-value width of the endothermic peak (Tm1) observed when measuring by differential calorimetry under rising temperature conditions starting at 50° C. and increasing 20° C./min is 15° C. or higher, the polystyrene-converted weight-average molecular weight is between 250,000 and 2,000,000 inclusive, the peak temperature of the loss tangent (tan δ) is between 100° C. and 200° C. inclusive, and the peak value of the loss tangent (tan δ) is between 0.060 and 0.090 inclusive. A mesh fabric comprising the liquid crystal polyester fiber. A production method for melt liquid crystal polyester fiber, characterized in that liquid crystal polyester fiber obtained by melt-spinning is subject to solid-phase polymerization, and subsequently heat treated at a stretch ratio of at least 0.1% and under 3.0% at a temperature at least 50° C. higher than the endothermic peak temperature (Tm1) as observed when measuring by differential calorimetry under rising temperature conditions starting at 50° C. and increasing 20° C./min.
Abstract:
An object of the present invention is to provide a ligand-immobilized sea-island composite fiber in which generation of fine particles due to peeling of a sea component from an island component and generation of fine particles due to destruction of a fragile sea component are both suppressed. The present invention provides a sea-island composite fiber comprising a sea component and island components, in which a value (L/S) obtained by dividing the average total length (L) of the perimeter of all island components in a cross section perpendicular to the fiber axis by the average cross-sectional area (S) of the cross section is from 1.0 to 50.0 μm−1, a distance from the surface to the outermost island component is 1.9 μm or less, and an amino group-containing compound is covalently bonded to a polymer constituting the sea component at a charge density of 0.1 μmol or more and less than 500 μmol per 1 gram dry weight.
Abstract:
A multicomponent fiber includes a sea component and an island component, wherein in cross-section observation of the multicomponent fiber, the multicomponent fiber includes a sea-island region with the plurality of island components arranged in the sea component; and one or more sea component regions formed only of the sea component between the sea-island region, and a width (H) of the sea component region is larger than a maximum value of a distance (W) between island components existing in the sea-island region and neighboring each other.
Abstract:
The present invention relates to a conjugated fiber including two kinds of polyesters having a molecular weight difference of 5,000 or more in a fiber cross section, in which a high-molecular weight component is completely covered with a low-molecular weight component, and the high-molecular weight component has an orientation parameter of 1.5 to 3.0 and a crystallinity of 0% to 40%.
Abstract:
An object of the present invention is to provide a carrier for adsorbing organic matter, which achieves both of adsorption ability for organic matter and suppression of pressure increase. The present invention provides a carrier for adsorbing organic matter, comprising a sea-island type solid composite fiber, wherein the pore volume is 0.05 to 0.5 cm3/g and the fiber diameter is 25 to 60 μm.