Abstract:
The present disclosure is directed to a physically crosslinked, closed cell continuous multilayer foam structure comprising at least one foam polypropylene/polyethylene layer with a TPU cap layer. The multilayer foam structure can be obtained by coextruding a multilayer structure comprising at least one foam composition layer with at least one cap composition layer, irradiating the coextruded structure with ionizing radiation, and continuously foaming the irradiated structure.
Abstract:
A physically crosslinked, closed cell continuous foam structure derived from recycled metallized polyolefin material; polypropylene, polyethylene, or combinations thereof, a crosslinking agent, and a chemical blowing agent is obtained. The foam structure is obtained by extruding a structure comprising a foam composition, irradiating the extruded structure with ionizing radiation, and continuously foaming the irradiated structure.
Abstract:
A physically crosslinked, closed cell continuous multilayer foam structure comprising at least one polypropylene/polyethylene coextruded foam layer is obtained. The multilayer foam structure is obtained by coextruding a multilayer structure comprising at least one foam composition layer, irradiating the coextruded structure with ionizing radiation, and continuously foaming the irradiated structure.
Abstract:
The present disclosure is directed to a physically crosslinked, closed cell continuous multilayer foam structure comprising at least one foam polypropylene/polyethylene layer with a TPU cap layer. The multilayer foam structure can be obtained by coextruding a multilayer structure comprising at least one foam composition layer with at least one cap composition layer, irradiating the coextruded structure with ionizing radiation, and continuously foaming the irradiated structure.
Abstract:
A physically crosslinked, closed cell continuous foam structure derived from recycled metallized polyolefin material; polypropylene, polyethylene, or combinations thereof, a crosslinking agent, and a chemical blowing agent is obtained. The foam structure is obtained by extruding a structure comprising a foam composition, irradiating the extruded structure with ionizing radiation, and continuously foaming the irradiated structure.
Abstract:
Described herein are methods and processes of manufacturing irradiation crosslinked polypropylene foam. In some embodiments, this includes extrusion of all material components, including a liquid crosslinking agent, to manufacture extruded structures for production of irradiation crosslinked polypropylene foam.
Abstract:
A physically crosslinked, closed cell continuous multilayer foam structure comprising at least one polypropylene/polyethylene coextruded foam layer is obtained. The multilayer foam structure is obtained by coextruding a multilayer structure comprising at least one foam composition layer, irradiating the coextruded structure with ionizing radiation, and continuously foaming the irradiated structure.
Abstract:
A physically crosslinked, closed cell continuous multilayer foam structure comprising at least one polypropylene/polyethylene coextruded foam layer is obtained. The multilayer foam structure is obtained by coextruding a multilayer structure comprising at least one foam composition layer, irradiating the coextruded structure with ionizing radiation, and continuously foaming the irradiated structure.
Abstract:
A physically crosslinked, closed cell continuous multilayer foam structure comprising at least one polypropylene/polyethylene coextruded foam layer is obtained. The multilayer foam structure is obtained by coextruding a multilayer structure comprising at least one foam composition layer, irradiating the coextruded structure with ionizing radiation, and continuously foaming the irradiated structure.