Abstract:
The process to recover heat in oxidative dehydrogenation of butene to butadiene is presented. The process utilizes heat recovered in oxidative dehydrogenation of butene to butadiene to generate steam. The process utilizes the circulated water stream generated in oxidative dehydrogenation of butene to butadiene for steam generation. A feedstream comprising butene is mixed with steam and preheated air at the inlet of the oxidative dehydrogenation reactor.
Abstract:
An apparatus for producing butadiene by way of oxidative dehydrogenation of a butene-rich feed stream includes: (a) a reactor adapted for receiving said butene-rich feed stream and converting butenes to butadiene, thereby providing a butadiene enriched product effluent stream; (b) a superheater coupled to the reactor to receive the butadiene enriched product effluent stream from the reactor as well as being configured to receive reactor feed, said superheater transferring sensible heat from the butadiene enriched product effluent stream to reactor feed and (c) a first feed-vaporizer coupled to the superheater to receive the butadiene enriched product effluent stream as it exits the superheater and to transfer sensible heat from the butadiene enriched product effluent stream to reactor feed. Also provided are (d) a second feed vaporizer; (e) a purification train; and (f) a thermal oxidizer.
Abstract:
Butadiene is made from a butene rich feed by passing a superheated butene rich feed including superheated steam and oxygen at a temperature of at least about 343° C. (650° F.) over a catalyst bed having a depth of over about 69 cm (27 inches) of granules of ferritic oxidative dehydrogenation catalyst. Inlet conditions being controlled such that the oxidative dehydrogenation reactions initially occur in the lower most layers of catalyst. Process control includes monitoring the temperature throughout the bed and increasing the inlet temperature in response to a drop in the temperature in the active layer, when the active layer of oxidative dehydrogenation catalyst begins to become deactivated so that the reaction zone moves upwardly in the oxidative dehydrogenation bed.
Abstract:
Oxidative dehydrogenation includes: (a) providing a gaseous feed stream to a catalytic reactor, the feed stream comprising a dehydrogenation reactant, oxygen, superheated steam, hydrocarbon moderator gas and optionally nitrogen, wherein the molar ratio of moderator gas to oxygen in feed stream is typically from 4:1 to 1:1 and the molar ratio of oxygen to nitrogen in the feed stream is at least 2; (b) oxidatively dehydrogenating the reactant in the reactor to provide a dehydrogenated product enriched effluent product stream; and (c) recovering dehydrogenated product from the effluent product stream. One preferred embodiment is a process for making butadiene including dimerizing ethylene to n-butene in a homogeneous reaction medium to provide a hydrocarbonaceous n-butene rich feed stream and oxidatively dehydrogenating the n-butene so formed.
Abstract:
The present invention discloses a process to treat a ferrite based catalyst useful in the oxidative dehydrogenation of monololefins and diolefins which process includes a preheat step prior to use of the catalyst in the OXO-D reactor. The catalyst is preferably a zinc ferrite catalyst for the production of butadiene. It has been observed that substantially no nitrogen oxide emissions result from the use of this treated catalyst in the reactor unit during the oxidative dehydrogenation reaction.
Abstract:
Butadiene is formed by dehydrogenation of butenes which are mixed with steam and oxygen then converted to butadiene by oxidative dehydrogenation over a ferritic oxide catalyst, wherein the sensible heat in the oxidative dehydrogenation reaction product is utilized along with heat produced by thermal oxidation of low value volatile products formed to reduce energy requirements and CO2 emissions. Sensible heat is utilized at high temperature for purposes of superheating feed and at somewhat lower temperatures for purposes of vaporizing feed at sequential locations in the process.
Abstract:
The present discloses a process and catalyst therefor to selectively remove acetylenes from gaseous streams in the vapor phase. The process is particularly suitable for high yield recovery of olefinic hydrocarbons from gaseous streams in refinery processes.
Abstract:
A process is presented for the production of butadienes. The process includes the separation of oxygenates from the product stream from an oxidative dehydrogenation reactor. The process includes quenching the product stream and solvent and oxygenates from the product stream. The oxygenates are stripped from the solvent with an inert gas to reduce the energy consumption of the process, and the solvent is recycled and reused in the process.
Abstract:
The process to recover heat in oxidative dehydrogenation of butene to butadiene is presented. The process utilizes heat recovered in oxidative dehydrogenation of butene to butadiene to generate steam. The process utilizes the circulated water stream generated in oxidative dehydrogenation of butene to butadiene for steam generation. A feedstream comprising butene is mixed with steam and preheated air at the inlet of the oxidative dehydrogenation reactor.
Abstract:
The present invention discloses a process to treat a ferrite based catalyst useful in the oxidative dehydrogenation of monololefins and diolefins which process includes a preheat step prior to use of the catalyst in the OXO-D reactor. The catalyst is preferably a zinc ferrite catalyst for the production of butadiene. It has been observed that substantially no nitrogen oxide emissions result from the use of this treated catalyst in the reactor unit during the oxidative dehydrogenation reaction.