Abstract:
Methods and systems for repairing oxidation of CIGS surfaces during manufacture of a CIGS solar cell are generally disclosed. Oxidation of an absorber reduces the photoluminescence intensity of the CIGS surface. The absorber is immersed in a reduction tank having a reducing reagent therein. The reducing reagent reverses the oxidation of the CIGS absorber, increasing the interface quality and corresponding photoluminescence intensity. After reversing the oxidation, a buffer layer is deposited on the CIGS absorber to prevent further surface oxidation.
Abstract:
A method of forming a CIGS absorber wherein at least one source particle is selected and prepared as a powder or gel; the powder or gel is deposited on a substrate, compressed, and annealed. In some embodiments, a plurality of source particles are prepared as powders and mixed prior to deposition, compression, and annealing. In other embodiments, a plurality of source particles are individually deposited in layers, collectively compressed, and collectively annealed. In yet further embodiments, a plurality of source particles are individually deposited in layers, individually compressed, and collectively annealed.
Abstract:
A solar cell includes an absorber layer formed of a CIGAS, copper, indium, gallium, aluminum, and selenium. A method for forming the absorber layer provides for using an indium-aluminum target and depositing an aluminum-indium film as a metal precursor layer using sputter deposition. Additional metal precursor layers such as aCuGa layer are also provided and a thermal processing operation causes the selenization of the metal precursor layers. The thermal processing operation/selenization operation converts the metal precursor layers to an absorber layer. In some embodiments, the absorber layer includes a double graded chalcopyrite-based bandgap.
Abstract:
A solar cell device and a method of fabricating the device is described. The solar cell is fabricated by providing a substrate, depositing a back contact over the substrate, depositing an absorber over the back contact, depositing a front contact over the absorber, and embedding a highly thermally conductive material within the solar cell. The highly thermally conductive material can be embedded as a highly thermally conductive layer between the substrate and the back contact, a highly thermally conductive fill within a P3 scribe line, or both.
Abstract:
A method for fabricating a solar cell using a nozzle assembly that includes a base portion, a scriber coupled to the base portion, and a nozzle coupled to the base portion such that the nozzle is positioned a predefined distance from a tip of the scriber is provided. The method generally comprises positioning a substructure that includes a buffer layer and an absorber layer proximate to the base portion. A P2 line is scribed through the buffer and absorber layers of the substructure using the scriber tip. A nanoparticle solution is sprayed, using the nozzle, onto at least one portion of the buffer layer at a predefined pressure when the P2 line is being scribed through the buffer and absorber layers such that a transparent conductive oxide (TCO) layer is inhibited from forming over the portion of the buffer layer that is being sprayed with the nanoparticle solution.
Abstract:
A sputtering apparatus comprises a chamber configured to contain at least one sputter target and at least one substrate to be coated. The chamber has at least one adjustable shielding member defining an adjustable aperture. The member is positioned between the at least one sputter target and the at least one substrate. The aperture is adjustable in at least one of the group consisting of area and shape.
Abstract:
The present disclosure provides systems and methods for depositing an alkaline metal layer on an absorber to generate a copper-poor region at a surface of the absorber. The copper-poor region provides an increased efficiency over non-treated absorbers having copper-rich surfaces. The alkaline metal layer may be deposited by any suitable deposition method, such as, for example, a wet deposition method. After the alkaline metal layer is deposited, the absorber is annealed, causing the alkaline metal layer to interact with the absorber to reduce the copper-profile of the absorber at the interface between the alkaline metal layer and the absorber.
Abstract:
A method for monitoring the process of fabricating solar cells includes delivering at least one solar cell substructure to a wash chamber having a wash solution therein, such that the solar cell substructure is at least partially immersed within the wash solution. A residual material is removed from the solar cell substructure using the wash solution. A pH value of the wash solution is detected automatically while the solar cell substructure is at least partially immersed within the wash solution, via a control apparatus. The method also includes determining whether the detected pH value is at a predefined threshold pH level or within a predefined pH range for the wash solution, via the control apparatus. The pH value of the wash solution is modified automatically if the detected pH value is different from the predefined threshold pH level or different from the predefined pH range.
Abstract:
A method for removing non-bonding compounds from absorber layers of a plurality of absorber substrates during a cleaning process comprises setting one or more conditions of a solution in a solvent tank used to clean the non-bonding compounds from the absorber layers of the absorber substrates. The method further comprises calculating thickness of boundary layers formed on the absorber layers based on hydrodynamics of the solution in the solvent tank during the cleaning process, and setting one or more of spacing between the absorber substrates and circulation speed of the solution in the solvent tank during the cleaning process. The method further comprises immersing and cleaning the absorber substrates in the solvent tank under one or more of the set conditions, spacing and circulation speed of the solution.
Abstract:
A solar cell device and a method of fabricating the device is described. The solar cell is fabricated by forming a back contact layer on a front side of a substrate, forming an absorber layer on the back contact layer, applying a protective layer on a back side of the substrate, depositing a buffer layer on the absorber layer. Excess buffer materials are deposited on the substrate back side, and the protective layer with excess buffer materials are removed.