Abstract:
Described herein are compounds and methods for the treatment of coronavirus infection. The compounds can function as an inhibitor of the main protease (Mpro) of coronaviruses. The compounds can include diphenylmethyl piperazine derivatives, diphenylmethyl piperidine derivatives, diphenylmethylidene piperidine derivatives, tricyclo[9.4.0.03,8]pentadeca-1(11),3(8),4,6,12,14-hexaen derivatives, tricyclo[9.4.0.03,8]pentadeca-1(11),3(8),4,6,9,12,14-heptaen derivatives, 6,11-dihydrobenzo[c][1]benzoxepin derivatives, 6,11-dihydrobenzo[c][1]benzothiepin derivatives, 5,5-dioxo-6,11-dihydrobenzo[c][1]benzothiepin derivatives, and 6-oxo-5,11-dihydrobenzo[c][1]benzazepin derivatives, as well as pharmaceutically acceptable salts, hydrates, and prodrugs thereof.
Abstract:
A composition comprising a drug selected from the group consisting of an arylphenoxypropionate derivative, an aryloxyphenoxyacetate derivative, an aryloxyphenylacetate derivative, a substituted quinol, or a salt, hydrate, or prodrugs thereof, or a combination thereof, in an amount and formulation sufficient to inhibit a mycobacterium is disclosed.
Abstract:
Compositions and methods for inhibiting and/or sensitizing or re-sensitizing a parasite to an antiparasitic drug are provided. The compositions can comprise a an arylphenoxypropionate derivative, an aryloxyphenoxyacetate derivative, an aryloxyphenylacetate derivative, one or more substituted quinols, or a pharmaceutically acceptable salt, hydrate, or prodrug thereof, or a combination thereof in an amount and formulation sufficient to sensitize the parasite to the drug, treating infection of a patient by a parasite with a drug, or to prevent symptomatic infection of a patient by a parasite with a drug.
Abstract:
In an embodiment, the present disclosure relates to a method of restoring cytochrome c oxidase (CcO) activity in a subject in need thereof. In some embodiments, the method includes administering a therapeutically effective amount of elesclomol or analog thereof and rescuing defects of cells in the subject with deficiencies or mutations in at least one of SOD1, AT-1, API SI, COA6, SC02, COX6B1, CTRL ATOX1, CCS, GSX1, ATP7A, ATP7B, CLCN5, and CLCN7. In a further embodiment, the present disclosure relates to a method of treating disorders of copper metabolism. In some embodiments, the method includes administering a therapeutically effective amount of elesclomol or analog to a subject, where the disorder is caused by a deficiency or mutation to a gene including, without limitation, SOD1, AT-1, API SI, COA6, SC02, COX6B1, CTR1, ATOX1, CCS, GSX1, ATP7A, ATP7B, CLCN5, CLCN7, or combinations thereof.
Abstract:
Compositions and methods for inhibiting and/or sensitizing or re-sensitizing a parasite to an antiparasitic drug are provided. The compositions can comprise a an arylphenoxypropionate derivative, an aryloxyphenoxyacetate derivative, an aryloxyphenylacetate derivative, one or more substituted quinols, or a pharmaceutically acceptable salt, hydrate, or prodrug thereof, or a combination thereof in an amount and formulation sufficient to sensitize the parasite to the drug, treating infection of a patient by a parasite with a drug, or to prevent symptomatic infection of a patient by a parasite with a drug.
Abstract:
A composition comprising a drug selected from the group consisting of an arylphenoxypropionate derivative, an aryloxyphenoxyacetate derivative, an aryloxyphenylacetate derivative, a substituted quinol, or a salt, hydrate, or prodrugs thereof, or a combination thereof, in an amount and formulation sufficient to inhibit a mycobacterium is disclosed.
Abstract:
In an embodiment, the present disclosure relates to a method of restoring cytochrome c oxidase (CcO) activity in a subject in need thereof. In some embodiments, the method includes administering a therapeutically effective amount of elesclomol or analog thereof and rescuing defects of cells in the subject with deficiencies or mutations in at least one of SOD1, AT-1, APIS1, COA6, SCO2, COX6B1, CTR1, ATOX1, CCS, GSX1, ATP7A, ATP7B, CLCN5, and CLCN7. In a further embodiment, the present disclosure relates to a method of treating disorders of copper metabolism. In some embodiments, the method includes administering a therapeutically effective amount of elesclomol or analog to a subject, where the disorder is caused by a deficiency or mutation to a gene including, without limitation, SOD1, AT-1, APIS1, COA6, SCO2, COX6B1, CTR1, ATOX1, CCS, GSX1, ATP7A, ATP7B, CLCN5, CLCN7, or combinations thereof.
Abstract:
Compositions and methods for inhibiting and/or sensitizing or re-sensitizing a parasite to an antiparasitic drug are provided. The compositions can comprise a rifamycin derivative or a pharmaceutically acceptable salt, hydrate, or prodrug thereof in an amount and formulation sufficient to inhibit or induce drug-sensitization in a parasite. The methods can comprise administering a rifamycin derivative or a pharmaceutically acceptable salt, hydrate, or prodrug thereof to a parasite in an amount and formulation sufficient to inhibit or induce drug-sensitization in the parasite.