Abstract:
Method of identification and compensation for inversion of the input bit stream when decoding LDPC codes includes obtaining a code word of the LDPC code from a demodulator output and writing the code word into a buffer memory, decoding the code word, calculating a syndrome for each iteration when decoding, making an analysis of converging the weight of the syndrome, generating an inversion feature for the input bit stream based on this analysis, continuing the decoding, if the inversion feature for the input bit stream does not give evidence of detecting inversion, resetting, if the inversion feature for the input bit stream shows inversion, the LDPC decoder and analysis parameters for the convergence of the weight of the syndrome, reading next code word from the buffer memory, and producing an inversion of this code word, and feeding the word to the decoder input to implement the next decoding operation.
Abstract:
Method of identification and compensation for inversion of the input bit stream when decoding LDPC codes includes obtaining a code word of the LDPC code from a demodulator output and writing the code word into a buffer memory, decoding the code word, calculating a syndrome for each iteration when decoding, making an analysis of converging the weight of the syndrome, generating an inversion feature for the input bit stream based on this analysis, continuing the decoding, if the inversion feature for the input bit stream does not give evidence of detecting inversion, resetting, if the inversion feature for the input bit stream shows inversion, the LDPC decoder and analysis parameters for the convergence of the weight of the syndrome, reading next code word from the buffer memory, and producing an inversion of this code word, and feeding the word to the decoder input to implement the next decoding operation.
Abstract:
Navigation satellite receivers have a large number of channels, where phase discriminators and loop filter of a PLL operate in phase with data bits and control of numerically controlled oscillator (NCO) carried out simultaneously on all channels. Since symbol boundaries for different satellites do not match, there is a variable time delay between the generation of control signals and NCO control time. This delay may be measured by counting a number of samples in the delay interval. A proposed system measures non-energy parameters of the BPSK-signal carrier received in additive mixture with noise when a digital loop filter of PLL controls NCO with a constant or changing in time delay. A control unit controls bandwidth and a LF order by changing transfer coefficients based on analyzing estimated signal parameters and phase tracking error at a PD output.