Abstract:
A liquid ejection apparatus includes a channel unit with a plurality of nozzles and pressure chambers configured to communicate with respective nozzles, and a plate provided on the channel unit to cover pressure chambers in a first direction from the pressure chambers, the plate comprising a plate surface extending along a second direction perpendicular to the first direction. The liquid ejection apparatus includes a plurality of drive elements arranged over the pressure chambers. The liquid ejection apparatus includes a plurality of contact terminals electrically connected to their respective drive elements at a terminal placement surface which is non-parallel with the plate surface and includes a portion of the terminal placement surface that is offset from the plate surface. The liquid ejection apparatus includes a flexible wiring board configured to be electrically connected to the contact terminals.
Abstract:
A piezoelectric actuator unit includes: a wiring board; a piezoelectric actuator which is provided with a piezoelectric layer, a plurality of individual electrodes provided to the piezoelectric layer, a common electrode which faces the plurality of individual electrodes sandwiching the piezoelectric layer between the common electrode and individual electrodes, and which is divided into a plurality of split electrodes, a plurality of individual contact points which are in conduction with the individual electrodes, and which are to be connected to the wiring board, and a plurality of reinforcing contact points which are connected to the wiring board to reinforce a connection with the wiring board; and a conduction mechanism which brings the plurality of split electrodes into conduction. Each of the split electrodes is in conduction with at least one of the reinforcing contact points.
Abstract:
An FPC connected to a piezoelectric actuator has a board and two driver ICs mounted on the board. The board is provided with two wires for transmitting two kinds of mode selection signals respectively corresponding to two kinds of driving modes and with a selection pad selecting one from the two kinds of mode selection signals transmitted through the two wires and then outputting the selected signal to each driver IC.
Abstract:
A temperature detecting apparatus includes: a temperature sensor having an element whose resistance value changes depending on temperature and detecting temperature based on a voltage value obtained by supply of a supply current to the element from a power source and outputting an output voltage depending on the voltage value; a change-instructing-signal output portion connected to the temperature sensor and outputting a change instructing signal for changing the supply current based on the output voltage outputted from the temperature sensor; and a current-value change portion disposed between the power source and the element, connected to the change-instructing-signal output portion, and changing a current value of the supply current to be supplied to the element when having received the change instructing signal.
Abstract:
A wiring connection structure of driver IC is provided. The wiring connection structure includes: a driver IC installed on a wiring substrate; output wires connected to output terminals of the driver IC; input wires including multiple kinds of signal input wires for transmitting multiple kinds of signals different from each other in susceptibility to an influence of noise; and bonding wires which connect input terminals of the driver IC to connection terminals of the input wires, and have an identical length to each other and a different loop height from the wiring substrate. The intervals between the input terminals are narrower than those between the connection terminals, and the loop height is higher with respect to the bonding wire connected to the connection terminal of the signal input wire for transmitting a signal more susceptible to the influence of noise.
Abstract:
A liquid jetting apparatus is provided including: a liquid jetting head having a nozzle formed therein through which the liquid is jetted; a driving unit which is configured to output energy to the liquid jetting head; an energy recovery mechanism which is configured to recover and supply a part of the energy supplied from the driving unit to the liquid jetting head; and a mist removing unit to which the part of the energy recovered by the energy recovery mechanism is supplied so that the supplied energy is used to remove a mist generated under a condition that the liquid jetting head jets the liquid.
Abstract:
A liquid jetting apparatus includes: a liquid jetting head in which nozzles for jetting the liquid are formed and which has an actuator for jetting the liquid from the nozzles; an interposer substrate which is provided to the liquid jetting head and on which a driver IC is mounted; a control substrate which controls the liquid jetting head; a wire member which connects the interposer substrate and the control substrate; and a flexible circuit board which connects the interposer substrate and the actuator, wherein the interposer substrate has a first connecting portion to which the wire member is to be connected, and a second connecting portion to which the flexible circuit board is to be connected, and the driver IC is arranged nearer to the first connecting portion than the second connecting portion of the interposer substrate.
Abstract:
There is provided a piezoelectric actuator device including a piezoelectric actuator which includes a plurality of piezoelectric elements, each of which has a piezoelectric layer sandwiched between two types of electrodes; and a plurality of driver ICs which drive the piezoelectric elements, wherein a part of the piezoelectric elements are connected to the plurality of driver ICs.
Abstract:
A liquid discharge apparatus includes a liquid discharge head and a circuit board. The liquid jetting head includes a channel unit in which a plurality of nozzles and a plurality of liquid channels communicating with the nozzles respectively are formed, a plurality of drive portions which drive a plurality of deforming portions to deform so as to apply a jetting pressure to a liquid in the liquid channels, a plurality of lead portions arranged to cover the electrodes while maintaining a space between the electrodes and the lead portions, and a plurality of input terminals which are electrically connected to the electrodes via the lead portions. A plurality of connecting terminals which are electrically connected to the input terminals respectively are formed on the circuit board.
Abstract:
A bump is disposed on a surface of an actuator unit and communicated with a corresponding electrode of the actuator unit, and a part of the bump is extended through an insulating covering material to be electrically connected to a corresponding terminal of a wiring board. When a point which is positioned on an outer circumferential surface of a base end portion of the bump, and is closest to a drive part is assumed to be a closest point, and a point which is positioned on the outer circumferential surface of the base end portion of the bump, and is most distant from the drive part is assumed to be a most distant point, a close region including the closest point is processed such that the uncured insulating covering material is less likely to flow in the close region than in a distant region including the most distant point.