Abstract:
A method of manufacturing a substrate joint body by mounting a TFT on a wiring substrate includes a step of arranging an electrode pad of the wiring substrate and an electrode pad of the TFT at a predetermined interval and mechanically coupling the wiring substrate and the TFT with a adhesive and a step of electrically coupling the wiring substrate and the TFT by growing a bump from the electrode pad of the wiring substrate and/or the electrode pad of the TFT.
Abstract:
A via hole is formed on a base substrate before a device circuit is formed, and thermal oxidation is performed to form a thermal oxidation layer on a surface of the base substrate on which the device circuit is formed and a surface in the via hole. The device circuit having a conductive section is formed on the base substrate after the thermal oxidation, and then, a conductive body is embedded in the via hole.
Abstract:
A device mounting structure includes: a base; a unit having a mounting area on which a device is mounted; a projection formed on a face of the unit; a first wiring disposed on the unit and between a top part of the projection and the mounting area; a groove provided in the base, the groove incorporating at least part of the projection; and a second wiring disposed at a bottom part of the groove in the base and electrically connected to the first wiring. The first wiring has a resin layer containing metallic particles, and a metal film on the resin layer.
Abstract:
A method is provided including, after joining a wiring substrate and an element substrate, separating a second substrate of the element substrate from a semiconductor element, and electrically coupling an element-side terminal that has been exposed by the separation to a wiring-side terminal disposed outside the semiconductor element by electroless plating.
Abstract:
A liquid droplet ejection head that ejects liquid droplets through deformation of a driven element, includes: a first substrate having a pressurizing chamber with a nozzle aperture that ejects liquid droplets, and a first surface on which is formed a first wiring electrically connected to the drive element; a second substrate disposed on the first surface of the first substrate and covering the driven element, the second substrate having a second surface and a side surface, the second surface facing in a same direction as the first surface of the first substrate and on which is formed a second wiring, the side surface on which is formed a third wiring that combines the first wiring and the second wiring; a semiconductor element disposed on the second surface of the second substrate, and which drives the driven element; and plating that electrically connects the first wiring, the second wiring, the third wiring, and a connection terminal of the semiconductor element.
Abstract:
A method of manufacturing a substrate joint body by mounting a TFT on a wiring substrate includes a step of arranging an electrode pad of the wiring substrate and an electrode pad of the TFT at a predetermined interval and mechanically coupling the wiring substrate and the TFT with a adhesive and a step of electrically coupling the wiring substrate and the TFT by growing a bump from the electrode pad of the wiring substrate and/or the electrode pad of the TFT.
Abstract:
A device mounting structure includes: a base; a unit having a mounting area on which a device is mounted; a projection formed on a face of the unit; a first wiring disposed on the unit and between a top part of the projection and the mounting area; a groove provided in the base, the groove incorporating at least part of the projection; and a second wiring disposed at a bottom part of the groove in the base and electrically connected to the first wiring. The first wiring has a resin layer containing metallic particles, and a metal film on the resin layer.
Abstract:
A method is provided including, after joining a wiring substrate and an element substrate, separating a second substrate of the element substrate from a semiconductor element, and electrically coupling an element-side terminal that has been exposed by the separation to a wiring-side terminal disposed outside the semiconductor element by electroless plating.
Abstract:
A bump forming method having a step of patterning a resist layer so as to have a penetrating hole above a pad, a step of applying energy to cause cross-linking in the resist layer, and hardening at least a surface of the resist layer, and a step of forming a metal layer electrically connected to the pad within the penetrating hole.
Abstract:
A method of manufacturing a device that has a semiconductor element includes: forming a first wiring on a first surface of a first member; forming a second wiring on a second surface of a second member with a gap from a connection terminal and a third wiring on an inclined plane of the second member, the second member being disposed on the first member so that the first and second surfaces face in the same direction, the third wiring being aligned with, and connecting, the first and second wirings; disposing the semiconductor element on the first or second surface; and providing plating that electrically connects the first, second and third wiring with the connection terminal, wherein the connection terminal faces the second wiring, and the plating is provided in the gap between the connection terminal and the second wiring.