Abstract:
Methods of controlling crystal polymorphism in organic-free synthesis of Na-Zeolites and the zeolite crystals formed using those methods are provided. The methods disclosed herein create certain types of zeolite crystals more efficiently than other previously known methods. The methods also create certain types of zeolite crystals in a form and concentration not previously disclosed. The methods disclosed herein generally comprise using solutions with varying ratios of silicon (Si), aluminum (Al), hydroxide (OH), and water. Some implementations of the invention disclosed include efficient methods of producing nearly pure cancrinite (CAN), methods of obtaining sodalite in solutions with a high Si/Al ratio, and a method of forming thin, platelet-like ANA crystals with a width of less than about 1 μm and a length of at least about 3 μm.
Abstract:
Embodiments of the invention generally provide compositions of crystalline zeolite materials with tailored crystal habits and the methods for forming such crystalline zeolite materials. The methods for forming the crystalline zeolite materials include binding one or more zeolite growth modifiers (ZGMs) to the surface of a zeolite crystal, which results in the modification of crystal growth rates along different crystallographic directions, leading to the formation of zeolites having a tailored crystal habit. The improved properties enabled by the tailored crystal habit include a minimized crystal thickness, a shortened internal diffusion pathlength, and a greater step density as compared to a zeolite having the native crystal habit prepared by traditional processes. The tailored crystal habit provides the crystalline zeolite materials with an aspect ratio of about 4 or greater and crystal surfaces having a step density of about 25 steps/μm2 or greater.