Abstract:
The present disclosure provides methods of treating epidermolysis bullosa, and/or preventing, preventing the progression of, or delaying the onset of one or more symptom associated with scarring, e.g., of blisters, in subjects with epidermolysis bullosa through chronic systemic administration of collagen 7.
Abstract:
Described herein are compositions that include monoclonal antibodies that specifically bind Hsp90α and methods of using the same to treat HIF-1α-overexpressing cancer. In some embodiments, the cancers are breast cancer or lung cancer. The monoclonal antibodies bind the epitope TKPIWTRNP (SEQ ID NO: 1) in Hsp90α or VKHFSVEGQ (SEQ ID NO: 2) in Hsp90α.
Abstract:
Described herein are compositions that include monoclonal antibodies that specifically bind Hsp90α and methods of using the same to treat HIF-1a-overexpressing cancer. In some embodiments, the cancers are breast cancer or lung cancer. The monoclonal antibodies bind the epitope TKPIWTRNP in Hsp90α or VKHFSVEGQ in Hsp90α.
Abstract:
The present invention discloses a method for treating wounds and for accelerating the healing of wounds by administering an effective amount of a pharmaceutical composition containing type VII collagen protein, mini-C7 protein, variants thereof or any combinations thereof. The pharmaceutical composition may be administered through a variety of routes including intravenous injection, topical application, or oral ingestion. The method may further include administering a genetically modified fibroblast capable of expressing type VII collagen protein, miniC7 protein, variants thereof or small growth factors to achieve synergistic healing effect.
Abstract:
Described herein are compositions that include monoclonal antibodies that specifically bind Hsp90α and methods of using the same to treat HIF-1a-overexpressing cancer. In some embodiments, the cancers are breast cancer or lung cancer. The monoclonal antibodies bind the epitope TKPIWTRNP in Hsp90α or VKHFSVEGQ in Hsp90α.