Abstract:
The present invention relates to an apparatus for gas-liquid distribution. More specifically, the present invention relates to a gas-liquid distribution device that may be used in an ionic liquid co-current gas and liquid up-flow reactor designed to distribute gas uniformly across the reactor cross section through restriction orifices on distributors located across the distribution tray.
Abstract:
One exemplary embodiment can be a process for transferring catalyst in a fluid catalytic cracking apparatus. The process can include passing the catalyst through a conveyor wherein the conveyor contains a screw for transporting the catalyst.
Abstract:
A fluidized catalytic reactor connected to a start-up heater is provided. The start-up heater provides sufficient heat to a catalyst containing stream to gradually increase the feed temperature. This allows for a critical volumetric flow rate to be achieved so that catalyst can be recovered from product instead of being entrained in product.
Abstract:
A process for regenerating spent catalyst by combusting coke and fuel gas together in the presence of enriched oxygen restores activity to the catalyst to bring back to adequate activity level while reducing or obviating the need for the oxygen treatment step. The oxygen concentration in the oxygen supply gas should be greater than 21 vol %.
Abstract:
Processes and apparatuses for co-processing pyrolysis effluent and a hydrocarbon stream in which a char produced by the catalytic cracking of the pyrolysis effluent is recovered and utilized to provide energy, such as heat to the catalytic cracking zone. The char can be burned in various combustion zones associated with the catalytic cracking zone. The char is produced from a renewable resource.
Abstract:
Methods and FCC apparatuses are provided for cracking hydrocarbons. An FCC apparatus includes a riser with a riser outlet positioned within a reactor catalyst collection area. A stripper is coupled to the reactor catalyst collection area, where the riser extends through the stripper, and where the stripper includes a stripper exterior wall. A sleeve is positioned within the stripper between the riser and the stripper exterior wall.
Abstract:
A process for distributing quench fluid to a stream of product comprising contacting a feed stream with a stream of catalyst to convert the feed stream to product. The quench fluid is sprayed into the stream of product from a first distributor through at least one first opening centered at a first radial position and from a second distributor through at least one second opening centered at a second radial position different from the first radial position. Catalyst is preferably separated from the product stream prior to quenching. The process may include a first set of first distributors and a second set of second distributors.
Abstract:
A fluid catalytic cracking (FCC) process for cracking multiple feedstocks in a FCC apparatus comprising a first set of feed distributors having first distributor tips and a second set of feed distributors having second distributor tips is provided. A first feed is injected into the riser from first distributor tips. A second feed is injected into the riser from second distributor tips. The first distributor tips and the second distributor tips are positioned at different radii in the riser. The first feed and the second feed are cracked in the riser in the presence of an FCC catalyst to provide a cracked effluent stream. The first distributor tips and the second distributor tips are located into a region of lower catalyst density and a region of higher catalyst density respectively in the riser.
Abstract:
A fluid catalytic cracking (FCC) process for cracking multiple feedstocks in a FCC apparatus comprising a first set of feed distributors having first distributor tips and a second set of feed distributors having second distributor tips is provided. A first feed is injected into the riser from first distributor tips. A second feed is injected into the riser from second distributor tips. The first distributor tips and the second distributor tips are positioned at different radii in the riser. The first feed and the second feed are cracked in the riser in the presence of an FCC catalyst to provide a cracked effluent stream. The first distributor tips and the second distributor tips are located into a region of lower catalyst density and a region of higher catalyst density respectively in the riser.
Abstract:
Methods and oil refinery apparatuses are provided for producing hydrocarbons. A method includes fractionating a crude oil feedstock to produce a crude saturated stream and a residual stream. The residual stream is cracked in a cracking device to produce an unsaturated stream, and the unsaturated stream and the crude saturated stream are combined to produce a combined stream. The combined stream is fractionated to produce a refinery fuel gas stream.