Abstract:
According to one aspect of the present disclosure, a digital microfluidic system is provided. The digital microfluidic system includes a device, a control electronics, a field programmed gate array (FPGA), and a computer. The device includes a droplet on an electrode array, where the electrode array includes a plurality of electrodes. The control electronics connects to the device and provides an actuation pulse to the electrodes, where the control electronics generates a capacitance-derived frequency signal. The FPGA connects to the control electronics and collects the capacitance-derived frequency signal. The computer connects to the FPGA, the computer uses a frequency of the capacitance-derived frequency signal to calculate a precise droplet position and generates a duration voltage signal.
Abstract:
A three stage amplifier is provided and the three stage amplifier comprises a first gain stage, a second gain stage and a third gain stage wherein said first stage receives an amplifier input signal and said third gain stage outputs an amplifier output signal. The amplifier includes a feedback loop having a current buffer and a compensation capacitance provided from the output of said third gain stage to the output of the first gain stage. In addition, an active left half plane zero stage is embedded in said feedback loop for cancelling a parasitic pole of said feedback loop.
Abstract:
According to another aspect of the present disclosure, a radio-frequency-to-baseband-function-reuse receiver with shared amplifiers for common-mode and differential-mode amplification is provided. The receiver includes two set networks connected in parallel. The set networks includes a first and a second input capacitors, a first and a second output capacitors, a first transconductance amplifier having an input terminal, a second transconductance amplifier having an input terminal, a first switch, and a second switch. The first and the second input capacitors connect to a first node. The first and the second output capacitors connect to a second node. The first transconductance amplifier connects between the first input capacitor and the first output capacitor. The second transconductance amplifier connects between the second input capacitor and the second output capacitor. The first switch connects between the input terminal of the first transconductance amplifier and the second node. The second switch connects between the input terminal of the second transconductance amplifier and the second node.
Abstract:
The present invention discloses a gain-boosted n-path passive-mixer-first receiver. According to another aspect of the present disclosure, a gain-boosted n-path passive-mixer-first receiver is provided. The receiver includes a number n of switch-capacitor (sc) sets, a resistor, and a transconductance amplifier. The sc sets connect in parallel, and the sc sets have a first node and a second node. The resistor connects to the first node. The transconductance amplifier connects to the resistor and the second node.
Abstract:
One embodiment of the present invention features a poly-phase local oscillator generator combining frequency dividers and direct-injection-locked phase correctors. The poly-phase local oscillator generator comprises a plurality of phase correctors configured to relax frequency and tuning range of a reference local oscillator (LO), and a plurality of frequency dividers, coupled to the phase correctors, configured to offer different frequency segments. The phase correctors are expandable, so that phase accuracy can be optimized by cascading more of themselves.
Abstract:
A palm-size portable μNMR relaxometer system for performing multi-step multi-sample chemical/biological assays, comprising a PCB having a CMOS μNMR transceiver and a DMF device integrated thereon. A portable magnet has an inner gap configured to at least partially receive the DMF device. The DMF device comprises a platform of electrodes including a sensing site and receives one or more samples for analysis at an electrode and automatically transports the one or more samples on individual paths sequentially to the sensing site, for performing sensing on each sample sequentially. A Butterfly coil disposed on the PCB and underneath the DMF device and is at least partially received in the inner gap. The Butterfly coil excites the sample at the μNMR sensing site by transducing a magnetic field produced at the sensing site to an electrical signal which is processed by the CMOS μNMR transceiver to produce an analytical signal.
Abstract:
According to one aspect of the present disclosure, a control-engaged electrode-driving method for droplet actuation is provided. The method includes, a first voltage is provided to a first electrode for licking off a droplet. A second voltage is naturally discharged to a third voltage for maintaining a droplet movement. A fourth voltage is provided to the first electrode for accelerating the droplet. Naturally discharging from the second voltage to the third voltage and providing the fourth voltage to the first electrode are repeated. The first voltage is provided to a second electrode when a centroid of the droplet reaching a centroid of the first electrode. Naturally discharging from the second voltage to the third voltage and providing the fourth voltage to the second electrode are repeated.
Abstract:
According to one aspect of the present disclosure, an ultra-low voltage current reused voltage-controlled oscillator and transconductance-capacitor filter is provided. The circuit includes a voltage-controlled oscillator stacked atop a transconductance-capacitor filter. The voltage-controlled oscillator includes a node one, a node two, a node three, a node four, an inductance, a variable capacitor, a first switched element, a second switched element, a third switched element, and a fourth switched element. The transconductance-capacitor filter includes a first resistor, a second resistor, a fifth switched element, a sixth switched element, a seventh switched element, and an eighth switched element.
Abstract:
An exemplary embodiment of the present invention is a wireless power transmission circuit that that provides power to a load of variable resistance with an alternating current (AC) power source induced at a secondary coil in a secondary side of the circuit by a primary coil in a primary side of the said circuit. The wireless power transmission circuit includes a switch-controlled capacitor (SCC) and a semi-active rectifier (SAR). The SCC connects to the AC power source. The SCC includes a first capacitor connected in parallel with two electrically controllable switches in series. The SAR connects to output of the SCC for rectifying the output of the SCC, wherein the SAR comprises a bridge circuit that includes two electrically controllable switches. Both switches in the SCC are turned on for half a cycle and complement to each other and are turned off with a time delay relative to the zero cross points of the AC power source, and the time delay is a control angle of the SCC. Both switches in the SAR are turned on for half a cycle and complement to each other and are turned off with a time delay relative to the zero cross points of the AC power source, and that time delay is a conduction angle of the SAR. The control angle of the SCC and the conduction angle of the SAR are regulated to provide a load impedance that matches the impedance of the coils, so that the wireless power transmission provides constant power output and enhance the power transmission efficiency.
Abstract:
A complex-pole load is configured as a parallel circuit, having 4 transistors arranged in pairs. Each pair of transistors has a transistor gated by a control voltage sources, and connected in parallel with a transistor diode connected for gating by the respective input. The control voltage sources result in the circuit synthesizing a first order complex pole at a positive IF (+IF) or a negative IF (−IF) for channel selection and image rejection, offering image rejection and channel selection concurrently.