Abstract:
A stylet includes a handle assembly with an indicator display and a stiff wire assembly extending distally from the handle assembly having a non-imaging ultrasonic device on a distal end. The stylet includes a circuit assembly having one or more of a pulser, a transmit/receive chip, a bandpass filter, a differential amplifier, an ADC, and an MCU, operable to control the operation of the ultrasonic device and to receive and analyze data from the ultrasonic device to facilitate implantation of a device such as a catheter.
Abstract:
The present technology relates generally to systems and methods for mediated-reality surgical visualization. A mediated-reality surgical visualization system includes an opaque, head-mounted display assembly comprising a frame configured to be mounted to a user's head, an image capture device coupled to the frame, and a display device coupled to the frame, the display device configured to display an image towards the user. A computing device in communication with the display device and the image capture device is configured to receive image data from the image capture device and present an image from the image data via the display device.
Abstract:
Drainage systems for excess body fluids and associated methods are disclosed herein. A drainage system in accordance with an embodiment of the present technology can include, for example, a drainage catheter, a first reference line, a second reference line, and a pressure sensor assembly. The catheter can include a flexible interface member and an inlet can be placed in fluid communication with a site of excess body fluid within a patient. A first flexible region of the first reference line can be in pressure communication with the flexible interface member, and a second flexible region of the second reference line can be in pressure communication with the surrounding atmosphere. The pressure sensor assembly can be spaced apart from the flexible regions, and measure the pressures of the first and second reference lines. This information can be used to determine the pressure at the site of excess body fluid.
Abstract:
Drainage systems for excess body fluids and associated methods are disclosed herein. A drainage system in accordance with an embodiment of the present technology can include, for example, a drainage catheter, a first reference line, a second reference line, and a pressure sensor assembly. The catheter can include a flexible interface member and an inlet can be placed in fluid communication with a site of excess body fluid within a patient. A first flexible region of the first reference line can be in pressure communication with the flexible interface member, and a second flexible region of the second reference line can be in pressure communication with the surrounding atmosphere. The pressure sensor assembly can be spaced apart from the flexible regions, and measure the pressures of the first and second reference lines. This information can be used to determine the pressure at the site of excess body fluid.
Abstract:
A stylet (100) includes a handle assembly (102) with an indicator display (112) and a stiff wire assembly (120) extending distally from the handle assembly (102) having a non-imaging ultrasonic device on a distal end. The stylet includes a circuit assembly having one or more of a pulser (120), a transmit/receive chip (132), a bandpass filter (134), a differential amplifier (136), an ADC (138), and an MCU (140), operable to control the operation of the ultrasonic device and to receive and analyze data from the ultrasonic device to facilitate implantation of a device such as a catheter.
Abstract:
The present technology relates generally to protective helmets with non-linearly deforming members. Helmets configured in accordance with embodiments of the present technology can comprise, for example, an inner layer, an outer layer, a space between the inner layer and the outer layer, and an interface layer disposed in the space. The interface layer comprises a plurality of filaments, each having a height, a longitudinal axis along the height, a first end proximal to the inner layer, and a second end proximal to the outer layer. The filaments are sized and shaped to span the space between the inner layer and the outer layer. The filaments are configured to deform non-linearly in response to an external incident force on the helmet.
Abstract:
A stylet (100) includes a handle assembly (102) with an indicator display (112) and a stiff wire assembly (120) extending distally from the handle assembly (102) having a non-imaging ultrasonic device on a distal end. The stylet includes a circuit assembly having one or more of a pulser (120), a transmit/receive chip (132), a bandpass filter (134), a differential amplifier (136), an ADC (138), and an MCU (140), operable to control the operation of the ultrasonic device and to receive and analyze data from the ultrasonic device to facilitate implantation of a device such as a catheter.