Abstract:
The disclosure provides an approach for the dynamic configuration of virtualized objects. A virtual object may be associated with a desired state defining a first plurality of resources for allocating to the virtual object. The first plurality of resources correspond to one or more resource types. Techniques include determining that each of a plurality of hosts does not have sufficient available resources to allocate the first plurality of resources to the virtual object according to the desired state. Techniques include selecting, a first host of the plurality of hosts to run the virtual object. Techniques include allocating a second plurality of resources to the virtual object from the first host, wherein the second plurality of resources is less than the first plurality of resources, and running the virtual object in the first host.
Abstract:
Exemplary methods, apparatuses, and systems include a source site management server receiving, from first and second potential target site management servers, characteristics of the first and second potential target sites that affect replication of data from the source site to each potential target site. The source site management server receives selection of one or more criteria to be met in the selection of a target site for replication of data. The source site management server determines which potential target site is a better match for the received criteria based upon a comparison of the received criteria with the received characteristics of the target sites. The source site management server configures, automatically in response to the determination, the selected site as the target site for replication of data within the source site.
Abstract:
A system and method for semi-automatic workload domain deployment in a computing environment uses a user host selection of at least one host computer for a workload domain to automatically recommend candidate host computers for the workload domain from available host computers using relative and absolute selection criteria. The relative selection criteria include criteria that are based on properties of any manually selected host computers, while the absolute selection criteria include criteria that are not based on properties of any manually selected host computers. Another user selection of at least one of the candidate host computers can then be made for the workload domain. The workload domain is deployed using the user host selections of the at least one hot computer and the at least one of the candidate host computers.
Abstract:
Exemplary methods, apparatuses, and systems include a hypervisor receiving an error message from an agent within a first virtual machine run by the hypervisor. In response to the error message, the hypervisor determines and initiates a corrective action for the hypervisor to take in response to the error message. An exemplary corrective action includes initiating a reset of the first virtual machine or a reset of a second virtual machine.
Abstract:
A method for restoring a data volume using incremental snapshots of the data volume includes creating a first series of incremental snapshots according to a first predefined interval. The method further includes creating a second series of incremental snapshots according to a second predefined interval that is an integer multiple of the first predefined interval. The method also includes receiving a request to restore the data volume to a point-in-time. The method further includes restoring the data volume to the point-in-time using none or some of the snapshots in the first series that were created at or prior to the point-in-time, and all of the snapshots in the second series that were created at or prior to the point-in-time.
Abstract:
A method of managing virtual resources executing on a hardware platform that employs sensors to monitor the health of hardware resources of the hardware platform, includes filtering sensor data from the hardware platform and combining the sensor data with a fault model for the hardware platform to generate a health score, receiving an inventory that maps the virtual resources to the hardware resources of the hardware platform, receiving resource usage data describing use of the hardware resources of the hardware platform by the virtual resources, and generating resource utilization metrics from the resource usage data. The method includes receiving policy data specifying rules applicable to the inventory, determining a set of recommendations for changes to the inventory based on the health score, the resource usage data, and the policy data, and executing at least one recommendation to implement the changes to the inventory.
Abstract:
Exemplary methods, apparatuses, and systems include a hypervisor receiving an error message from an agent within a first virtual machine run by the hypervisor. In response to the error message, the hypervisor determines and initiates a corrective action for the hypervisor to take in response to the error message. An exemplary corrective action includes initiating a reset of the first virtual machine or a reset of a second virtual machine.
Abstract:
Exemplary methods, apparatuses, and systems include a target site management server transmitting, to a source site management server, a plurality of protection service plans available for replication of data from the source site to the target site. The transmission of the protection service plans includes a description of one or more service level characteristics provided by each protection service plan and excludes a listing of physical and virtual resources within the target site that are to provide the service level characteristics. The target site management server receives selection of one of the protection service plans and determines the physical resources within the target site to provide the advertised service level characteristics for the data replication. The target site management server further transmits configuration details to one or more of the determined physical resources to implement the replication infrastructure within the target site according to the selected protection service plan.
Abstract:
Techniques are described for placing virtual machines (VM) on computer hosts. In one embodiment, a user may compose a constraint specification document which includes VM and host properties and how they are retrieved, as well as constraint predicates that define valid VM placements on hosts. Use of the constraint specification document permits new constraints, including constraints that involve new properties, to be handled without requiring changing the underlying code for collecting required input data and processing said data to determine whether placement constraints are satisfied. Instead, based on the constraint specification document, a resource scheduler or high availability module may program a programmable data collector to fetch the needed properties from the appropriate places. Then, the resource scheduler or high availability module may parse the constraint predicates, evaluate potential placements to determine whether the constraint predicates are satisfied, and place VMs according to placements that satisfy the constraint predicates.
Abstract:
Exemplary methods, apparatuses, and systems include a first host system configuring storage of the first host to serve as a primary cache for a virtual machine running on the first host. A second host system configures storage of the second host to serve as a secondary cache and boots a placeholder virtual machine. The first host transmits, in response to write operations from the virtual machine directed to the primary cache, copies of the write operations to the second host to create mirrored copies on the secondary cache. The first host acknowledges each write operation from the virtual machine when the write operation is committed to both the primary cache and the secondary cache. When the virtual machine is restarted on the second host in response to a failure or migration event, the secondary cache is promoted to serve as a new primary cache for the virtual machine.