Abstract:
A guidewire providing imaging and light for photoactivation of therapeutic agents. Using optical fibers with Bragg gratings, electromagnetic waves are coupled to photoacoustic materials thereby providing acoustic energy for imaging tissues. The reflected acoustic waves can be sensed with photoreflective materials coupled to different optical fibers. Additional optical fibers allow photoactivated therapeutics to be activated in proximity to the imaged tissues. The photoactivated therapeutics may be administered intravenously or with a drug-delivery catheter.
Abstract:
An intravascular ultrasound (IVUS) imaging system is provided. The IVUS imaging system includes an intravascular device including a transducer shaft with an ultrasound transducer at a distal end. The IVUS imaging system also includes an interface module removably coupled to the intravascular device. The interface module includes a connector rotatably coupled to a proximal end of the transducer shaft; a motor coupled to the connector; a spinning element coupled to the motor, wherein the spinning element comprises four conductive rings; a stationary element comprising a plurality of brushes, wherein the stationary element is disposed proximate the spinning element such that a different one of the plurality of brushes is in mechanical contact with each of the four conductive rings; and four conductors coupled to the connector and the spinning element such that the stationary element and the intravascular device are in electrical communication.
Abstract:
The invention generally relates to devices and methods for imaging and removing biological material from a vessel wall. In certain embodiments, the invention provides devices that include a body configured to fit within a lumen of a vessel, the body including an opening, a biological material removal assembly configured to remove biological material that is exposed to the removal assembly via the opening, and an imaging assembly coupled to the body and positioned to image the opening.
Abstract:
A guidewire providing imaging and light for photoactivation of therapeutic agents. Using optical fibers with Bragg gratings, electromagnetic waves are coupled to photoacoustic materials thereby providing acoustic energy for imaging tissues. The reflected acoustic waves can be sensed with photoreflective materials coupled to different optical fibers. Additional optical fibers allow photoactivated therapeutics to be activated in proximity to the imaged tissues. The photoactivated therapeutics may be administered intravenously or with a drug-delivery catheter.
Abstract:
The present invention generally relates to forward imaging devices for imaging the inside of a vessel and associated methods. The invention can involve an elongated body configured to fit within the vessel of a lumen and at least one imaging sensor located on the elongated body configured to image an object in a forward direction.
Abstract:
The invention generally relates to balloon catheters for vascular intervention and particularly to devices for imaging from within a balloon. The invention provides a balloon catheter with an imaging device inside the balloon and capable of viewing a treatment site through a wall of the balloon. The device allows a physician to both view the affected site within the vessel and to inflate the balloon at the location that is in view, thus allowing the balloon to be deployed with good positioning and efficiency while minimizing a stiff length of the catheter to give it good maneuverability.
Abstract:
The invention generally relates to intravascular imaging and methods of improved image quality by triggering image operations with a vessel flush. The invention provides systems and methods for intravascular imaging in which a flush such as the influx of clear saline or radiopaque dye triggers the imaging operation. The flush is detected by a mechanism—such as a pressure sensor or optical device on the imaging catheter, an external angiography system, or other device—that uses detection as a trigger to initiate imaging. Thus, when the blood is flushed, the catheter automatically takes a picture of the vessel wall.
Abstract:
An intravascular ultrasound (IVUS) imaging system is provided. The IVUS imaging system includes an intravascular device including a transducer shaft with an ultrasound transducer at a distal end. The IVUS imaging system also includes an interface module removably coupled to the intravascular device. The interface module includes a connector rotatably coupled to a proximal end of the transducer shaft; a motor coupled to the connector; a spinning element coupled to the motor, wherein the spinning element comprises four conductive rings; a stationary element comprising a plurality of brushes, wherein the stationary element is disposed proximate the spinning element such that a different one of the plurality of brushes is in mechanical contact with each of the four conductive rings; and four conductors coupled to the connector and the spinning element such that the stationary element and the intravascular device are in electrical communication.
Abstract:
An intravascular element, for example a guidewire, configured for pressure measurements and imaging within a patient. In an embodiment, the invention uses a system of optical fibers and photoabsorptive and/or photoreflective materials to make intravascular ultrasound (IVUS) measurements. In an embodiment, the invention uses microfabricated pressure sensors to measure fluidic pressure adjacent to the element, such as the pressure of the blood within the vasculature. In a clinical setting, the invention can provide a surgeon with critical information about pressure, tissue composition, and luminal area while also reducing the time for procedures.
Abstract:
The invention generally relates to devices and methods that allow an operator to obtain real-time images of a luminal surface prior to, during, and after an intraluminal procedure, including while an intraluminal tool is engaged with the luminal surface. In one embodiment, an imaging system of the invention includes a first elongate member that includes at least one first imaging element and a second member that includes at least one second imaging element. The first imaging element is an optical-to-acoustic transducer, and the second imaging element is an optical-to-acoustic transducer. The second member also defines a lumen. The second member is configured to receive at least a portion of the first elongate member within the lumen and is configured to move along a path of the first elongate member to obtain real-time images within the lumen and of the luminal surface.