Abstract:
An ultrasonically driven pump, which may be used for sampling body fluids or atomizing liquids, has a stationary outer needle and an inner needle mounted within the bore of the outer needle. The distal end of the inner needle is positioned adjacent to the distal end of the outer needle. The inner needle is ultrasonically vibrated by an ultrasonic actuator without vibrating the outer needle, with resulting draw of liquid through the distal end of the outer needle into the bore of the inner needle for discharge through the proximal end of the inner needle. The outer needle can be formed to have a penetrating tip suited for penetrating the skin of a subject to allow sampling of body fluids including interstitial fluids. The pump can also be used for atomizing liquid, by drawing liquid from a supply that is pumped from the distal end to an open proximal end of the inner needle where the liquid is discharged by atomization into the atmosphere.
Abstract:
A suspended semiconductor film is anchored to a substrate at at least two opposed anchor positions, and film segments are deposited on the semiconductor film adjacent to one or more of the anchor positions to apply either tensile or compressive stress to the semiconductor film between the film segments. A crystalline silicon film may be anchored to the substrate and have tensile stress applied thereto to reduce the lattice mismatch between the silicon and a silicon-germanium layer deposited onto the silicon film. By controlling the level of stress in the silicon film, the size, density and distribution of quantum dots formed in a high germanium content silicon-germanium film deposited on the silicon film can be controlled.
Abstract:
An ultrasonically driven pump, which may be used for sampling body fluids or atomizing liquids, has a stationary outer needle and an inner needle mounted within the bore of the outer needle. The distal end of the inner needle is positioned adjacent to the distal end of the outer needle. The inner needle is ultrasonically vibrated by an ultrasonic actuator without vibrating the outer needle, with resulting draw of liquid through the distal end of the outer needle into the bore of the inner needle for discharge through the proximal end of the inner needle. The outer needle can be formed to have a penetrating tip suited for penetrating the skin of a subject to allow sampling of body fluids including interstitial fluids. The pump can also be used for atomizing liquid, by drawing liquid from a supply that is pumped from the distal end to an open proximal end of the inner needle where the liquid is discharged by atomization into the atmosphere.