Abstract:
A filter system is disclosed. In an embodiment, a filter system includes a separation layer having a plurality of apertures that allow passage of a filtrate portion of a feed material from a first side of the separation layer to a second side of the separation layer, hydrophilic material integrated with the separation layer to promote the passage of the filtrate portion of the feed material through the plurality of apertures, and hydrophobic material integrated with the separation layer to inhibit blockage of the plurality of apertures by a retentate portion of the feed material.
Abstract:
A pressurizing centrifugal dehydrator for removing moisture includes: an inner basket into which slurry is introduced; an outer basket surrounding the inner basket; a pressurization chamber disposed in the outer basket; and a gas supplying portion for supplying gas into the pressurization chamber, wherein the gas supplied to the pressurization chamber is ejected from the pressurization chamber toward a dehydration product positioned between the outer basket and the pressurization chamber.
Abstract:
The present disclosure is directed to a filter system for a wind turbine, comprising at least a filter device having a filter housing with a volume portion and a cap portion, both defining a filter volume for receiving the oil filter. The filter housing is equipped with an inlet port, an outlet port and a pressure port. The filter system further comprises a pressurizing device having an interface port, and supply means for providing pressurized gas via the interface port, preferably into the filter housing of the filter device. The pressurizing device is configured for being connectable to the pressure port, preferably via a compensation duct. Furthermore, a method is disclosed, wherein the pressurizing device is connected to the filter housing, lubricant is discharged by applying pressurized gas into the filter volume, the cap portion is removed and an oil filter is subsequently replaced.
Abstract:
A water desalination system includes a first set of ultrafiltration membranes, a second set of ultrafiltration membranes, a first backwashing system configured to treat at least one of the first set of ultrafiltration membranes or the second set of ultrafiltration membranes with brine generated by a reverse osmosis process, and a second backwashing system configured to treat at least one of the first set of ultrafiltration membranes or the second set of ultrafiltration membranes with one or more chemicals and reverse osmosis permeate water.
Abstract:
A system for providing filtered air to an enclosed space includes a first air feed pump to pull air from an environment and push pressurized air to the enclosed space, a power source adapted to provide electrical power to the first air feed pump, a first filter media positioned between the first air feed pump and the enclosed space to provide coarse filtration of the pressurized air pumped from the first air feed pump through the first filter media and remove particles that are larger than approximately 5 microns, and a second filter media positioned between the first filter media and the enclosed space to provide fine filtration of the pressurized air pumped from the first filter media through the second filter media and remove particles that are between 1 nanometer and 20 nanometers in size.
Abstract:
A device for separating the liquid phase from the solid phase of a slurry, wherein such separation is obtained by a filtration process, preferably under pressure, in combination with a process of clarification and withdrawal of the clarified liquid within the filter at an adjustable height.
Abstract:
The present invention relates to a process for separation of oxyresveratrol molecule from the extracted solution of Artocarpus lakoocha Roxb. through membrane application. The product can be obtained in excellent yield upto 81% in case of extraction using water as solvent and can be separated from the extracted mixture upto 98% using indigenously developed nanofiltration membrane. Only the desired Trans isomer is obtained and no cis isomerisation takes place during the extraction process.
Abstract:
The invention shows an apparatus for recycling bituminous material bodies by melting, in particular for recycling bituminous composite material bodies comprising a composite material and a bituminous material, in particular roofing materials, in particular in the form of bituminous covering layers of roofing sheets, the apparatus including: a vessel having a vessel wall surrounding an interior space of the vessel extending along a vertical axis of the vessel for receiving the bituminous material bodies, a bottom plate and a compression plate extending transverse to the vertical axis wherein at least the compression plate has a number of through flow orifices adapted to allow a through flow of molten bituminous material, wherein the plates are movable along the vertical axis such that in a first operating state the compression plate is in a middle position for forming a melting space of larger size between the compression plate and the bottom plate for melting bituminous material in the melting space wherein the bottom plate is in a melting position, in a second operating state the compression plate is in a lower position for forming a compression space of minor size between the compression plate and the bottom plate for compressing solid residues and/or solid composite material in the compression space, and wherein molten bituminous material is retained in a storing space above the compression plate for storing and/or discharging bituminous material, wherein the bottom plate is in a compression position, wherein the compression plate is movable from the middle position to the lower position.
Abstract:
Method for the liquid solid separation of material mixtures and suspensions in which the material mixture under pressure is fed into a closed chamber having at least one filter surface and a hydrostatic pressure is generated within said chamber for separating the liquid phase. After separating the liquid phase the chamber is opened and the filter surface together with the filter cake is removed from said chamber. The material mixture firstly is treated by the means of hydrostatic pressure of about up to 0.2 bar, wherein 80 to 90% of the fed volume is removed as filtrate. Thereafter the concentrated remaining volume is drawn off and is further treated in the closed chamber with a pressure of up to 5 bar. By reducing the volume of the chamber finally with a pressure of up to 50 bar the remaining filtrate is separated.
Abstract:
Method for the liquid solid separation of material mixtures and suspensions in which the material mixture under pressure is fed into a closed chamber having at least one filter surface and a hydrostatic pressure is generated within said chamber for separating the liquid phase. After separating the liquid phase the chamber is opened and the filter surface together with the filter cake is removed from said chamber. The material mixture firstly is treated by the means of hydrostatic pressure of about up to 0.2 bar, wherein 80 to 90% of the fed volume is removed as filtrate. Thereafter the concentrated remaining volume is drawn off and is further treated in the closed chamber with a pressure of up to 5 bar. By reducing the volume of the chamber finally with a pressure of up to 50 bar the remaining filtrate is separated.