Abstract:
This disclosure describes systems and methods for synthesizing UCl3 from UCl4. These systems and methods may also be used to directly synthesize binary and ternary embodiments of uranium salts of chloride usable as nuclear fuel in certain molten salt reactor designs. The systems and methods described herein are capable of synthesizing any desired uranium chloride fuel salt that is a combination of UCl4, UCl3 and one or more non-fissile chloride compounds, such as NaCl. In particular, the systems and methods described herein are capable of synthesizing any UCl3—UCl4—NaCl or UCl3—NaCl fuel salt composition from UCl4—NaCl.
Abstract:
A system for the integral chlorine dioxide production with relatively independent sodium chlorate electrolytic production and chlorine dioxide production is provided. The system may feed electrolyte solution into a solid-liquid filter, filtering out the crystal and eliminating sodium chloride and sodium dichromate. The sodium chlorate crystal may be fed into a chlorine dioxide generator after dissolving, while sodium chloride and sodium dichromate solution separately return to electrolyzer for electrolysis process. Sodium chloride may be constantly formed as a by-product in the chlorine dioxide production unit, and solution containing the sodium chloride is withdrawn from the generator and, after filtration, washing and dissolution, recycled back to sodium chlorate production unit. This way, there is no need of sodium chloride make-up.
Abstract:
A reactor and process capable of concurrently producing electric power and selectively oxidizing gaseous components in a feed stream, such as hydrocarbons to unsaturated products, which are useful intermediates in the production of liquid fuels. The reactor includes an oxidation membrane, a reduction membrane, an electron barrier, and a conductor. The oxidation membrane and reduction membrane include an MIEC oxide. The electron barrier, located between the oxidation membrane and the reduction membrane, is configured to allow transmission of oxygen anions from the reduction membrane to the oxidation membrane and resist transmission of electrons from the oxidation membrane to the reduction membrane. The conductor conducts electrons from the oxidation membrane to the reduction membrane.
Abstract:
Inter-allotropic transformations of carbon are provided using moderate conditions including alternating voltage pulses and modest temperature elevation. By controlling the pulse magnitude, small-diameter single-walled carbon nanotubes are transformed into larger-diameter single-walled carbon nanotubes, multi-walled carbon nanotubes of different morphologies, and multi-layered graphene nanoribbons.
Abstract:
A reaction furnace for producing a polycrystalline silicon according to the present invention is designed so as to have an in-furnace reaction space in which a reaction space cross-sectional area ratio (S=[S0−SR]/SR) satisfies 2.5 or more, which is defined by an inner cross-sectional area (So) of a reaction furnace, which is perpendicular to a straight body portion of the reaction furnace, and a total sum (SR) of cross-sectional areas of polycrystalline silicon rods that are grown by precipitation of polycrystalline silicon, in a case where a diameter of the polycrystalline silicon rod is 140 mm or more. Such a reaction furnace has a sufficient in-furnace reaction space even when the diameter of the polycrystalline silicon rod has been expanded, and accordingly an appropriate circulation of a gas in the reaction furnace is kept.
Abstract:
A device consisting of antenna units and connected to a signal generator, capable of dissociating or breaking down molecules in solution, suspension or fluids in general, into their constituent elements, in order to recycle said compounds and eliminate contaminants which, if they remain chemically bound, would be dangerous or harmful to human, plant or animal health is provided.
Abstract:
A method of and apparatus for optimizing a hydrogen producing system is provided. The method of optimizing the hydrogen producing system comprises producing hydrogen gas using a hydrogen producing formulation and removing a chemical substance that reduces the hydrogen gas producing efficiency. Further, the hydrogen producing system comprises a hydrogen producing catalyst, a hydrogen generating voltage applied to the hydrogen producing catalyst to generate hydrogen gas, and a catalyst regenerating device to regenerate the hydrogen producing catalyst to a chemical state capable of generating the hydrogen gas when a hydrogen generating voltage is applied.
Abstract:
A method of producing carbon nanotubes includes directing a flow of a gas over a substrate to provide growth of at least one carbon nanotube in a carbon-nanotube-growth region of the substrate; applying an electric field to the carbon-nanotube-growth region of the substrate after the at least one carbon nanotube has begun to grow in the carbon-nanotube-growth region, the electric field being substantially in a first direction in the carbon-nanotube-growth region; and changing the electric field at a preselected time to be substantially in a second direction in the carbon-nanotube-growth region during growth of the at least one carbon nanotube. The second direction is different from the first direction resulting in a bend substantially at a selected position of the at least one carbon nanotube, the method of producing carbon nanotubes providing the production of the at least one carbon nanotube having at least one bend substantially at a selected position along the at least one carbon nanotube.
Abstract:
Methods of increasing the total power of non-thermal plasma power systems are described. Various embodiments of the present invention provide non-thermal plasma reactor assemblies and methods of operating said assemblies, each assembly comprising: (a) at least two non-thermal plasma reactors, each reactor comprising at least one inlet circumferential gas flow inlet apparatus, an electrode, and a flow restricted exit portal, said reactor configured to eject a jet of non-thermal plasma external to said reactor; (b) said at least two non-thermal plasma reactors configured to work in tandem with one another such that a first reactor electrode can be maintained at a high voltage electric potential relative to a second reactor electrode, said first and second reactor electrodes forming an electrode pair able to maintain a non-thermal plasma discharge between the first and second reactor electrodes.
Abstract:
A method of and apparatus for optimizing a hydrogen producing system is provided. The method of optimizing the hydrogen producing system comprises producing hydrogen gas using a hydrogen producing formulation and removing a chemical substance that reduces the hydrogen gas producing efficiency. Further, the hydrogen producing system comprises a hydrogen producing catalyst, a hydrogen generating voltage applied to the hydrogen producing catalyst to generate hydrogen gas, and a catalyst regenerating device to regenerate the hydrogen producing catalyst to a chemical state capable of generating the hydrogen gas when a hydrogen generating voltage is applied.