Abstract:
An apparatus for processing graphite particles is disclosed. The apparatus may comprise an electromagnetic radiation emitting device including a microwave device coupled to the reaction chamber for the creation of electromagnetic waves, the electromagnetic waves comprising microwaves. The apparatus may also comprise an inlet attached to the reaction chamber for introducing graphite particles, and an outlet attached to the reaction chamber for allowing processed graphite particles to exit the reaction chamber. The graphite particles in the reaction chamber thermally altered by exposure to the electromagnetic radiation such that the graphite particles are heated
Abstract:
The invention relates to an adsorptive filter medium (i.e. a filter unit or filter structure) which is suitable for purifying gases and/or gas mixtures, preferably air, and also for removing chemical and/or biological poisons and/or pollutants from gases and/or gas mixtures, preferably air, and also to the use thereof.
Abstract:
The present invention is directed to compositions useful for use in separators for use in lithium ion batteries, and membranes, separators, and devices derived therefrom.
Abstract:
The present invention is directed to compositions useful for use in separators for use in lithium ion batteries, and membranes, separators, and devices derived therefrom.
Abstract:
A sorbent polymer is provided that interacts or reacts with aqueous urea to aid the regeneration of a dialysate liquid. The sorbent polymer may include one or more specific functional groups bonded thereto. Such specific functional groups are selected from carboxylic acids, carboxylic acid esters, carboxylates, amides, dicarboxylic acids, dicarboxylic acid esters, and dicer boxylates to produce the desired urea sorbent.
Abstract:
A sorbent polymer is provided that interacts or reacts with aqueous urea to aid the regeneration of a dialysate liquid. The sorbent polymer may include one or more specific functional groups bonded thereto. Such specific functional groups are selected from carboxylic acids, carboxylic acid esters, carboxylates, amides, dicarboxylic acids, dicarboxylic acid esters, and dicer boxylates to produce the desired urea sorbent.
Abstract:
A sorbent polymer is provided that interacts or reacts with aqueous urea to aid the regeneration of a dialysate liquid. The sorbent polymer may include one or more specific functional groups bonded thereto. Such specific functional groups are selected from carboxylic acids, carboxylic acid esters, carboxylates, amides, dicarboxylic acids, dicarboxylic acid esters, and dicer boxylates to produce the desired urea sorbent.