Abstract:
Embodiments of apparatuses and risers for reacting a feedstock in the presence of a catalyst and methods for installing a baffle in such risers are provided. In one example, a riser comprises a sidewall that defines a cylindrical housing surrounding an interior. A plurality of baffle assemblies is releasably coupled to the sidewall and each comprises a baffle section.The baffle sections together define a segmented baffle ring extending inwardly in the interior.
Abstract:
Embodiments of apparatuses and risers for reacting a feedstock in the presence of a catalyst and methods for installing a baffle in such risers are provided. In one example, a riser comprises a sidewall that defines a cylindrical housing surrounding an interior. A plurality of baffle assemblies is releasably coupled to the sidewall and each comprises a baffle section. The baffle sections together define a segmented baffle ring extending inwardly in the interior.
Abstract:
A method for controlling the flowability of polymer particles flowing downward in a densified form inside a polymerization reactor, in which one or more monomers are gas-phase polymerized in the presence of a polymerization catalyst, the density of solid (Kg of polymer per m3 of reactor occupied by the polymer) being higher than 80% of the “poured bulk density” of the polymer, the method being characterized in that a liquid stream is continuously fed into the polymerization reactor at a mass flow rate per unity of reactor surface higher than 30 Kg/h m2.
Abstract:
Reactors with a dynamic compression elements that control the catalyst bed structure and hydrodynamic conditions inside the reactor in response to physical and structural changes in the catalyst bed, and methods of operating catalytic reactors are provided. The reactors are adjustable and/or can self-adjust in response to changes in the packing of the catalyst bed due, for example, to the attrition of the catalyst. The catalyst reactor designs improve operation of fixed bed reactors and enable the use of a variety of catalysts and supports, including materials that would not typically be considered for use in fixed bed reactors, such as those with limited durability or with moderate mechanical strength.
Abstract:
A system for treatment of one or more flowing materials includes a support bed (32) comprising a plurality of support elements (34). The support bed may have a void fraction of at least 45%. An active bed (36), such as a bed of catalytic elements, may be supported by the support bed. The void fraction of the support bed may be larger than that of an equivalent bed of conventional, spherical elements, enabling significant improvements in the flow rate of reactants through the bed and/or a reduced pressure drop across the support bed.
Abstract:
Methods and apparatus for separating liquid products and catalyst fines from a slurry used in a Fischer-Tropsch reactor. A settling system continuously or intermittently removes catalyst fines from the slurry and is coupled with catalyst-liquid separation system that separates liquid products from the slurry. The preferred separation system produces a sub-particle rich stream and a catalyst-lean stream that are removed from the system. The systems of the present invention act to reduce the concentration of catalyst fines in the reactor, thereby increasing the effectiveness of a catalyst-liquid separation system.
Abstract:
A process for carrying out a liquid/solid reaction comprises a) preparing a reaction suspension in which a first reactant is present in suspended form and a second reactant is present in dissolved form in a suspension medium, where one of the reaction products is insoluble in the suspension medium, b) passing the reaction suspension through an elongated reaction zone so that the Reynolds number of the stream is less than 20,000 and c) separating off the insoluble reaction product formed. The process has the advantage that the insoluble reaction product is obtained in a readily filterable form.
Abstract:
A process is described in which an elastic fluid is contacted with a particulate solid. This comprises providing a substantially vertical elongate tubular containment zone (1) containing a charge of the particulate solid (5), the volume of the containment zone (1) being greater than the settled volume of the particulate solid (5). An upper retainer means (3) is mounted at the upper end of the containment zone (1), the upper retainer means (3) being permeable to the fluid but adapted to retain particulate solid (5) in the containment zone (1). A follower means (4) is movably mounted in the containment zone (1) beneath the charge of particulate solid (5) for movement upwardly from the lower end of the containment zone (1) upon upward flow of elastic fluid through the containment zone (1) at a rate beyond a threshold rate. In the process the elastic fluid is caused to flow upwardly through the containment zone (1) at a rate which is sufficient to cause particulate solid (5) to rise up towards the upper end of the containment zone and form a cushion of particulate solid (5) against the underside of the upper retainer means (3). This rate is in excess of the threshold rate so as to cause the follower means (4) to move upwardly until it abuts against the underside of the cushion of particulate solid (5). The invention also provides an apparatus suitable for carrying out such a process and a method of loading a particulate solid into a substantially vertical tube.
Abstract:
A process for converting hydrocarbons in the presence of a catalyst is described that is carried out in a three-phase reactor in which the liquid Peclet number is in the range 0 (excluded) to about 10, with a superficial gas velocity Ug that is preferably less than 35 cm.s−1, to encourage gas transfer into the liquid phase and avoid too much attrition of the catalyst grains.
Abstract:
This invention relates to methods of minimizing catalyst degradation during the handling of a catalyst used in a slurry phase reactor. The methods include catalyst handling steps such as catalyst loading into a slurry phase reactor, slurry phase reactor start-up, slurry phase reactor shut-down, and slurry phase reactor unloading when catalyst reloading is envisaged. In the method of loading the slurry phase reactor, a slurry of wax and catalyst is formed in a loading vessel. Clean molten wax is formed in the reactor, syngas is pumped through the clean molten wax in the reactor, and the slurry from the loading vessel is transferred to the reactor.