Abstract:
The invention concerns a method for controlling the fuel supply to an internal combustion engine at start-up, the engine having a fuel supply system. The invention also concerns a carburetor having a fuel supply system including a main fuel path connecting a diaphragm controlled regulating chamber to a main outlet in the region of the venturi section, the main fuel path including an actively controlled fuel valve, and an idling fuel path branching off from the main fuel path downstream of the valve and ending in at least one idling outlet in the region of a throttle valve, the fuel supply system further including a start fuel line starting upstream or downstream of the fuel valve and ending in at least one start fuel outlet to the intake channel.
Abstract:
A fuel supply system includes an intake flow passage communicating with an intake port of a gas engine, a fuel shut-off valve assembly for blocking a fuel supply passage to prevent supply of a gas fuel to a fuel mixer, a vacuum flow passage communicating with a vacuum actuator of the fuel shut-off valve assembly and a crank chamber of the gas engine, and means for holding the vacuum flow passage open when the gas engine starts, such that a vacuum produced in the crank chamber is used to actuate the vacuum actuator for switching the fuel shut-off valve assembly to an open position allowing supply of the gas fuel to the fuel mixer.
Abstract:
A choke system for an internal combustion engine includes a carburetor having an air intake, a choke valve disposed in the air intake, and a choke lever coupled to the choke valve, wherein the choke valve is movable between a closed position and an open position, a mechanical linkage coupled to the choke lever, and a solenoid attached to the carburetor and coupled to the mechanical linkage so activation of the solenoid moves the choke valve, wherein the solenoid is activated in response to activation of a starter system of an internal combustion engine, thereby moving the choke valve via the mechanical linkage to the closed position.
Abstract:
An engine system and method for improving engine starting are disclosed. In one example, two engine cylinder port throttles are adjusted differently during engine starting. The system and method may improve engine torque control during an engine start.
Abstract:
The invention concerns a method for controlling the fuel supply to an internal combustion engine at start-up, the engine having a fuel supply system. The invention also concerns a carburetor having a fuel supply system including a main fuel path connecting a diaphragm controlled regulating chamber to a main outlet in the region of the venturi section, the main fuel path including an actively controlled fuel valve, and an idling fuel path branching off from the main fuel path downstream of the valve and ending in at least one idling outlet in the region of a throttle valve, the fuel supply system further including a start fuel line starting upstream or downstream of the fuel valve and ending in at least one start fuel outlet to the intake channel.
Abstract:
An internal combustion engine that includes a carburetor having a choke valve and an actuator configured to move the choke valve between a closed choke position and an open choke position. A passageway is configured to direct a pressure pulse from the engine into a fuel chamber of the carburetor. The engine further includes a priming valve at least partially located within the passageway. The priming valve is configured to move between an open primer position that allows the pressure pulse to enter the fuel chamber through the passageway and a closed primer position that substantially restricts the pressure pulse from entering the fuel chamber through the passageway. The priming valve is configured to move between the open primer position and the closed primer position by the actuator when the actuator moves the choke valve between the closed choke position and the open choke position, respectively.
Abstract:
It is intended to provide an air-fuel ratio control device for a carburetor, which is capable of variably inject fuel by opening and closing a choke valve in accordance with an opening degree of a throttle valve and the load and which is capable of achieving low cost, clean emission and fuel saving by attaining a desired air-fuel ratio in an entire operational range (rotation speed, load) of the internal combustion engine. The air-fuel ratio control device is provided with, but not limited to, a choke valve 6 arranged in an intake path of an internal combustion engine 1, a throttle valve 7 arranged in the intake path on a downstream side of the choke valve, a first stepper motor 8 driving the choke valve 6 to adjust an opening degree of the choke valve 6, a second stepper motor 9 driving the throttle valve 7 to adjust an opening degree of the throttle valve 7, and a controller 12 controlling the opening degree of the choke valve 6 in accordance with a change of a rotation speed of the internal combustion engine 1 based on the opening degree of the throttle valve 7, and, when the rotation speed of the internal combustion engine 1 is constant, controls the opening degree of the choke valve 6 based on a map which determines the opening degree of the choke valve 6 from load of the internal combustion engine 1, so as to achieve a desired air-fuel ratio.
Abstract:
A charge forming device may include a body having a fuel and air mixing passage, a throttle valve and choke valve moveable between first and second positions to control at least in part the fluid flow in the fuel and air mixing passage, and throttle and choke control members associated with the throttle and choke valves, respectively. The choke control member may also be associated with an engine starting system so that the choke valve is moved to its second position upon actuation of the starting system. The choke control member is selectively associated with the throttle control member to hold the choke control member in a position spaced from its first position. In this manner, the throttle valve and choke valve may be automatically positioned in a desired position for starting of the engine upon actuation of the engine starting system.
Abstract:
A carburetor (1, 51) has an intake channel (2) wherein a throttle element and a choke element are arranged with the choke element being upstream of the throttle element. The choke element is displaceable between an operating position (8) and at least one starting position (9). A first fuel path is provided which supplies fuel to the intake channel section (2) in dependence upon the underpressure present therein. A first controllable valve (20) for controlling the supplied fuel quantity is mounted in the first fuel path. In order to achieve an adapted fuel supply in different operating states, a second fuel path is provided which defines a bypass line to the first valve (20). A second valve (44, 54) is mounted in the second fuel path. A method for operating the carburetor (1, 51) provides that the second valve (44, 54) is actuated in dependence upon at least one operating parameter of the carburetor (1, 51).
Abstract:
A fuel enrichment device includes a body forming a first fuel chamber and a second fuel chamber. The second fuel chamber is adapted to contain a predetermined amount of enriching fuel to be provided to an engine. A normally open valve connects the first fuel chamber to the second fuel chamber. A normally closed valve for controls the provision of enriching fuel to the engine. The normally closed valve is open whenever the normally open valve is closed.