Abstract:
A plasma display panel including a front substrate and a rear substrate facing each other; a barrier wall interposed between the front substrate and the rear substrate, including base portions arranged on either side of a main discharge space and protruding portions protruding on the base portions, and defining stepped spaces on either side of the main discharge space; a scan and a sustain electrode pair including a pair of bus electrodes disposed in the main discharge space and a pair of transparent electrodes extending from the bus electrodes toward the stepped space; an address electrode that generates, together with the scan electrode, an address discharge and crossing the scan electrode; a phosphor layer formed across the main discharge space and the stepped spaces; and a discharge gas filled in the main discharge space and the stepped spaces.
Abstract:
A plasma display panel is provided. The plasma display panel has an electrode structure in which a second gap formed between electrode pairs in a discharge cell at a corner region of the panel is smaller than a gap formed between electrode pairs in a discharge cell at a more peripheral region of the panel. The plasma display panel may improve discharge capabilities, particularly in the more peripheral region of the panel, when a foreign substance is present on surfaces of the electrodes.
Abstract:
A plasma display panel with improved power efficiency and visual characteristics and contrast. The plasma display panel includes a first substrate and a second substrate facing the first substrate. A plurality of barrier ribs are on a side of the first substrate facing the second substrate and define a plurality of discharge cells. Sustain electrodes and scan electrodes extend on a side of the second substrate facing the first substrate, and each of the sustain electrodes and the scan electrodes has a bus electrode. One of the scan electrodes forms a discharge gap with a corresponding one of the sustain electrodes, wherein one of the sustain electrodes corresponds to two adjacent rows of discharge cells among the plurality of discharge cells, and the bus electrode of the one of the scan electrodes is adjacent to the discharge gap.
Abstract:
A plasma display panel according to an aspect of the present invention includes a scan electrode and a sustain electrode formed on an upper substrate in parallel with each other, a first barrier rib formed on a lower substrate opposing the upper substrate in parallel with the scan electrode, and a second barrier rib formed in the direction intersecting the first barrier rib, wherein the scan electrode or the sustain electrode comprises at least two or more bus electrodes, at least one of the bus electrodes is formed to be superposed onto the first barrier rib. Therefore, there is an advantage that the brightness is increased, since the area of portions of the bus electrode formed on the discharge space is small and thus the aperture ratio is raised. In addition, the boundary image sticking phenomenon and luminescent spot phenomenon in the non-discharge cell by cross-talk with neighboring cells can be reduced, since the area of portions of the electrode superposed onto the first barrier rib is also decreased. Therefore there are effects that it is possible to improve the discharge efficiency and display images with sharper and clearer image quality.
Abstract:
A Plasma Display Panel (PDP) includes: a first substrate; a second substrate arranged parallel to the first substrate; first barrier ribs arranged between the first and second substrates and defining discharge cells with the first and second substrates; second barrier ribs arranged between the first and second substrates, defining the discharge cells with the first substrate, the second substrate, and the first barrier ribs and being wider than the first barrier ribs; first discharge electrodes arranged inside the first barrier ribs to surround the discharge cells; second discharge electrodes arranged inside the second barrier ribs to surround the discharge cells and separated from the first discharge electrodes; phosphor layers arranged closer to the first barrier ribs and arranged inside the discharge cells; and a discharge gas contained within the discharge cells.
Abstract:
A plasma display panel including slanted electrodes is disclosed. In one embodiment, the plasma display panel includes: i) a front substrate, ii) a rear substrate facing the front substrate, iii) a dielectric wall interposed between the front and rear substrates to define discharge cells together with the front and rear substrates, iv) discharge electrodes including first and second discharge electrodes slanted at predetermined angles and embedded in the dielectric wall, wherein the first and second discharge electrodes surround on a diagonal, discharge corners of a discharge cell, respectively, and v) red, green, and blue phosphor layers formed in the discharge cells. Since the discharge electrodes are slanted, degradation of the phosphor layers due to the collision of ions during the discharge can be minimized. Therefore, the lifetime of the panel can be prolonged.
Abstract:
A plasma display panel (PDP) with an improved addressing operation at a lower voltage by reducing a distance of a discharge path of the PDP. The PDP also provides an improved structure for enhancing luminous efficiency. According to an embodiment of the present invention, the PDP includes a front substrate and a rear substrate, a plurality of first barrier ribs and second barrier ribs between the front and rear substrates to form a plurality of cells. Each of the second barrier ribs is closer to the scan electrode of a corresponding one of the cells than to the sustain electrode of the corresponding one of the cells. Address electrodes are provided on the rear substrate for performing address discharges along with the scan electrodes. Phosphor layer are respectively formed on at least a part of the unit cells. According to the embodiment, the second barrier ribs provide a shorter discharge path for performing address discharges.
Abstract:
A plasma display panel that can reduce electrode-defects, and can improve efficiency. The plasma display panel includes a first substrate and a second substrate that are spaced apart from each other; barrier ribs dividing a space between the first substrate and the second substrate into a plurality discharge cells; transparent electrodes disposed between the barrier ribs and the first substrate, wherein each of the transparent electrodes comprises a first extension unit and a second extension unit that extend to cross the respective discharge cells, and a connection unit connecting the first extension unit to the second extension unit, and at least a part of the connection unit is disposed on the barrier ribs.
Abstract:
Provided herein is a plasma display panel. The plasma display panel comprises a front substrate, a rear substrate opposite to the front substrate and having address electrodes formed thereon, a lattice-shaped partition wall formed between the front substrate and the rear substrate, a phosphor applied to a discharge space partitioned by the partition wall, and a plurality of scanning electrodes and common electrodes formed in intersection regions of the partition wall and extending perpendicular to the front substrate. The plasma display panel has a sufficient aperture ratio, and thus has enhanced light emitting efficiency. The scanning electrodes and the common electrodes formed in the intersection regions of the partition walls have a vertical construction, thereby effectively preventing the phosphor from being damaged by the plasma. Discharge uniformly occurs at the outer periphery of the discharge cell, thereby inducing effective excitation of the phosphor.
Abstract:
A plasma display panel including first and second substrates facing each other, a first electrode pair that is arranged on the first substrate and that induces a mutual discharge, and a second electrode pair that is arranged substantially parallel to the first electrode pair and that induces a mutual discharge.