Abstract:
An X-ray tube comprises a vacuum vessel; a cathode and an anode fixedly disposed inside the vacuum vessel; and a rotary mechanism that rotates the vacuum vessel. The cathode is disposed on the circumference with the rotary shaft of the rotary mechanism as its center and includes a plurality of cathode parts that can individually be turned ON/OFF. The anode includes parts opposite to the plurality of cathode parts, respectively.
Abstract:
The rotary cathode X-ray tube equipment of present invention is constructed so as to permit radiation of X-ray from all directions with respect to the whole circumference of a subject, and is used for x-ray CT. The equipment of the invention is constructed to prevent an X-ray radiation window 40 of a low strength from being influenced by atmospheric deformations of a vacuum vessel 1 or by machining and assembling errors, for example by using a joint portion disposed between the X-ray radiation window and an inner ring and having both a surface perpendicular to a rotational axis of a rotary member and a cylindrical surface parallel to the rotational axis, a face seal formed on the surface of the joint portion perpendicular to the rotational axis, and an axial seal formed on the cylindrical surface of the joint portion parallel to the rotational axis.
Abstract:
Tomosynthesis system with a rotating anode X-ray tube enabling a circular scan trajectory, wherein the X-ray tube 1 may be equipped with a large number of cathodes (21, 22) distributed around an anode. This allows to generate X-rays (41, 42) at focal spot positions (11, 12), for example evenly distributed on a for example circular line (14) on the surface (15) of an anode (10). The object (61) may be located on the (10) axis of rotation (6) of the anode at some distance to the source. For an examination, the object (61) may be exposed to X-ray beams (41, 42) generated successively on all focal spot positions (11, 12), wherein no movement of the X-ray tube 1 is necessary. The transmitted X-ray intensities may be measured by a flat panel detector (50) to achieve a reconstructed three-dimensional image data.
Abstract:
The rotary cathode X-ray tube equipment of the present invention is constructed so as to permit radiation of X-ray from all directions with respect to the whole circumference of a subject, and is used for x-ray CT. The equipment of the invention is constructed to prevent an X-ray radiation window 40 of a low strength from being influenced by atmospheric deformations of a vacuum vessel 1 or by machining and assembling errors, for example by using a joint portion disposed between the X-ray radiation window and an inner ring and having both a surface perpendicular to a rotational axis of a rotary member and a cylindrical surface parallel to the rotational axis, a face seal formed on the surface of the joint portion perpendicular to the rotational axis, and an axial seal formed on the cylindrical surface of the joint portion parallel to the rotational axis.
Abstract:
An x-ray transmission device includes two surfaces in frictional contact within a low fluid pressure environment provided by a housing substantially opaque to x-rays. Materials of the two surfaces are selected such that the frictional contact generates relative charging between the surfaces. The housing includes a window substantially transparent to x-rays, and an electron target, for example a metal, is on an interior surface of the window. The electron target faces the surface that is relatively negatively charged, such that electrons accelerated from that surface, or accelerated due to the negative charge of that surface strike the electron target to generate x-rays, which may be transmitted through the window.
Abstract:
An x-ray transmission device includes two surfaces in frictional contact within a low fluid pressure environment provided by a housing substantially opaque to x-rays. Materials of the two surfaces are selected such that the frictional contact generates relative charging between the surfaces. The housing includes a window substantially transparent to x-rays, and an electron target, for example a metal, is on an interior surface of the window. The electron target faces the surface that is relatively negatively charged, such that electrons accelerated from that surface, or accelerated due to the negative charge of that surface strike the electron target to generate x-rays, which may be transmitted through the window.
Abstract:
A bearing assembly mounted in an x-ray tube includes a bearing race and a bearing ball positioned adjacent to the bearing race. A coating is deposited on one of the bearing race and the bearing ball includes a lubricant and a hard material having a hardness greater than a base material of the bearing race and a base material of the bearing ball.
Abstract:
A magnetic coupling for a device, such as a cathode, which is received in a vacuum bulb of a tube which has shafts for mounting the tube for rotation on an axis, has an inner ferromagnetic part disposed in the vacuum bulb and connected to the device and an outer ferromagnetic part which is arranged outside of the vacuum bulb and aligned with the inner part. The outer part comprises a magnetic arrangement having a plurality of pole pieces to which the poles of a ferromagnetic yoke that forms the inner part are allocated.
Abstract:
An x-ray source in which monochromatic x-rays can be produced is provided. A method for producing X-rays and to the use of the x-ray source for x-raying bodies is also provided. A metallic film is arranged in a housing as a target which is bombarded with the electron beam. As a result, the metallic film is excited for emitting monochromatic x-rays, the relatively thin-walled target being modified such that the intended use for producing monochromatic x-rays is no longer possible. Therefore, advantageously, the production device can be pivoted for producing the electron beam as well as being able to wind the target on rollers.
Abstract:
An x-ray transmission device includes two surfaces in frictional contact within a low fluid pressure environment provided by a housing substantially opaque to x-rays. Materials of the two surfaces are selected such that the frictional contact generates relative charging between the surfaces. The housing includes a window substantially transparent to x-rays, and an electron target, for example a metal, is on an interior surface of the window. The electron target faces the surface that is relatively negatively charged, such that electrons accelerated from that surface, or accelerated due to the negative charge of that surface strike the electron target to generate x-rays, which may be transmitted through the window.