Abstract:
Atomic layer etching of a substrate using a wafer scale wave of precisely controlled electrons is presented. A volume of gaseous plasma including diluent and reactive species and electrons of a uniform steady state composition is generated in a positive column of a DC plasma proximate the substrate. A corrosion layer is formed on the substrate by adsorption of the reactive species to atoms at the surface of the substrate. The substrate is positively biased to draw electrons from the volume to the surface of the substrate and impart an energy to the electrons so to stimulate electron transitions in the corrosion layer species, resulting in ejection of the corrosion layer species via electron stimulation desorption. The substrate is negatively biased to repel the electrons from the surface of the substrate back to the volume, followed by a zero bias to restore the steady state composition of the volume.
Abstract:
Atomic layer etching of a substrate using a wafer scale wave of precisely controlled electrons is presented. A volume of gaseous plasma including diluent and reactive species and electrons of a uniform steady state composition is generated in a positive column of a DC plasma proximate the substrate. A corrosion layer is formed on the substrate by adsorption of the reactive species to atoms at the surface of the substrate. The substrate is positively biased to draw electrons from the volume to the surface of the substrate and impart an energy to the electrons so to stimulate electron transitions in the corrosion layer species, resulting in ejection of the corrosion layer species via electron stimulation desorption (ESD). The substrate is negatively biased to repel the electrons from the surface of the substrate back to the volume, followed by a zero bias to restore the steady state composition of the volume.
Abstract:
A plasma processing apparatus or a plasma processing method that processes a wafer to be processed, which is placed on a surface of a sample stage arranged in a processing chamber inside a vacuum container, using a plasma formed in the processing chamber, the apparatus or method including processing the wafer by adjusting a first high-frequency power to be supplied to a first electrode arranged inside the sample stage and a second high-frequency power to be supplied, via a resonant circuit, to a second electrode which is arranged in an inner side of a ring-shaped member made of a dielectric arranged on an outer peripheral side of a surface of the sample stage on which the wafer is placed, during the processing.
Abstract:
An electric discharge generator and power supply device of electric discharge generator includes a radical gas generation apparatus, a process chamber apparatus, and an n-phase inverter power supply device. The radical gas generation apparatus is located adjacent to the process chamber apparatus. The radical gas generation apparatus includes a plurality of (n) discharge cells. The n-phase inverter power supply device includes a power supply circuit configuration offering a means to control output of n-phase alternating current voltages and variably controls, according to positions of the plurality of discharge cells, the alternating current voltages of different phases.
Abstract:
A power supply device for plasma processing, wherein electric arcs may occur, comprises a power supply circuit for generating a voltage across output terminals, and a first switch connected between the power supply circuit and one of the output terminals. According to a first aspect the power supply device comprises a recovery energy circuit connected to the output terminals and to the power supply circuit. According to a second aspect the power supply device comprises an inductance circuit including an inductor and a second switch connected parallel to the inductor. According to a third aspect the power supply device comprises a controller for causing the power supply circuit and the first switch to be switched on and off. The controller is configured to determine a quenching time interval by means of a self-adaptive process. The quenching time interval defines the time interval during which, in an event of an arc, no voltage is generated across the output terminals.
Abstract:
A power supply device for plasma processing, wherein electric arcs may occur, comprises a power supply circuit for generating a voltage across output terminals, and a first switch connected between the power supply circuit and one of the output terminals. According to a first aspect the power supply device comprises a recovery energy circuit connected to the output terminals and to the power supply circuit. According to a second aspect the power supply device comprises an inductance circuit including an inductor and a second switch connected parallel to the inductor. According to a third aspect the power supply device comprises a controller for causing the power supply circuit and the first switch to be switched on and off. The controller is configured to determine a quenching time interval by means of a self-adaptive process. The quenching time interval defines the time interval during which, in an event of an arc, no voltage is generated across the output terminals.
Abstract:
A power supply device for plasma processing, wherein electric arcs may occur, comprises a power supply circuit for generating a voltage across output terminals, and a first switch connected between the power supply circuit and one of the output terminals. According to a first aspect the power supply device comprises a recovery energy circuit connected to the output terminals and to the power supply circuit. According to a second aspect the power supply device comprises an inductance circuit including an inductor and a second switch connected parallel to the inductor. According to a third aspect the power supply device comprises a controller for causing the power supply circuit and the first switch to be switched on and off. The controller is configured to determine a quenching time interval by means of a self-adaptive process. The quenching time interval defines the time interval during which, in an event of an arc, no voltage is generated across the output terminals.
Abstract:
A power supply device for plasma processing, wherein electric arcs may occur, comprises a power supply circuit for generating a voltage across output terminals, and a first switch connected between the power supply circuit and one of the output terminals. According to a first aspect the power supply device comprises a recovery energy circuit connected to the output terminals and to the power supply circuit. According to a second aspect the power supply device comprises an inductance circuit including an inductor and a second switch connected parallel to the inductor. According to a third aspect the power supply device comprises a controller for causing the power supply circuit and the first switch to be switched on and off. The controller is configured to determine a quenching time interval by means of a self-adaptive process. The quenching time interval defines the time interval during which, in an event of an arc, no voltage is generated across the output terminals.
Abstract:
A system and method for managing power delivered to a processing chamber is described. In one embodiment current is drawn away from the plasma processing chamber while initiating an application of power to the plasma processing chamber during an initial period of time, the amount of current being drawn away decreasing during the initial period of time so as to increase the amount of power applied to the plasma processing chamber during the initial period of time.
Abstract:
Operation of a plasma supply device having at least one switching bridge with at least two switching elements, and configured to deliver a high frequency output signal having a power of >500 W and a substantially constant fundamental frequency >3 MHz to a plasma load is accomplished by determining at least one operating parameter, at least one environmental parameter of at least one switching element and/or a switching bridge parameter, determining individual drive signals for the switching elements taking into account the at least one operating parameter, the at least one environmental parameter and/or the switching bridge parameter, and individually driving the switching elements with a respective drive signal.