Abstract:
A bonding device includes an irradiator that irradiates a surface of a first component with ultraviolet rays, and a conveyor that conveys the first component, wherein the irradiator irradiates the first component held by the conveyor with the ultraviolet ray, and the conveyor conveys the first component irradiated with the ultraviolet rays to a surface of a second component, and brings the surface of the first component and the surface of the second component into contact with each other to bond the first component and the second component.
Abstract:
The invention describes a light emitting device (100). The light emitting device (100) comprises at least one light emitting structure (110), at least one processing layer (120) and at least one optical structure (130). The optical structure (130) comprises at least one material processed by means of processing light (150). The at least one processing layer (120) is arranged to reduce reflection of the processing light (150) in a direction of the optical structure (130) at least by 50%, preferably at least by 80%, more preferably at least by 95% and most preferably at least by 99% during processing of the material by means of the processing light (150). It is a basic idea of the present invention to incorporate a non- or low-reflective processing layer (120) on top of a light emitting structure (110) like a VCSEL array in order to enable on wafer processing of light emitting structures (130) like microlens arrays. The invention further describes a method of manufacturing such a light emitting device (100).
Abstract:
A laser chip having a substrate, an epitaxial structure on the substrate, the epitaxial structure including an active region and the active region generating light, a waveguide formed in the epitaxial structure extending in a first direction, the waveguide having a front etched facet and a back etched facet that define an edge-emitting laser, and a first recessed region formed in the epitaxial structure, the first recessed region being arranged at a distance from the waveguide and having an opening adjacent to the back etched facet, the first recessed region facilitating testing of an adjacent laser chip prior to singulation of the laser chip.
Abstract:
The invention relates to a method for creating a detachment area (2) in a solid (1), in particular for detaching the solid (1) along the separating region (2). Said solid portion (12) that is to be detached is thinner than the solid body (1) from which the solid portion (12) has been removed. According to the invention, said method preferably comprises at least the following steps: the crystal lattice of the solid (1) is modified by means of a modifying agent, in particular by means of at least one laser, in particular a pico- or femtosecond laser. The modifications, in particular the laser beams penetrate into the solid (1) via a surface (5) of the solid portion (12) which is to be detached, several modifications (9) are created in the crystal lattice, said crystal lattice penetrates, following said modifications (9), in the areas surrounding the modifications (9), at least in one particular part.
Abstract:
A laser component assembly includes a carrier including first and second component portions wherein each component portion has a chip mounting surface, a lens mounting surface and a stop surface, the stop surface of each component portion includes first and second stop partial surfaces, the first stop partial surface is formed on a first stop element and the second stop partial surface is formed on a second stop element, the chip mounting surface is arranged between the first stop element and the second stop element, the stop surface is oriented perpendicularly to the chip mounting surface, a laser chip arranged on the chip mounting surface, the laser component assembly as a lens bar comprising an optical lens component portion and the lens bar is arranged on the lens mounting surfaces of the component portions and bears against the stop surfaces of the component portions.
Abstract:
A method for manufacturing an optical member includes providing a silicon substrate having a first main surface of a {110} plane and a second main surface of a {110} plane that are parallel to each other, forming mask patterns on the first main surface and the second main surface, each of the mask patterns having an opening extending in one direction, so that the opening on a first main surface side and the opening on a second main surface side are disposed alternately, or so that the opening on the second main surface side are disposed directly under the opening on the first main surface side, forming recesses having sloped surfaces in the first main surface side and the second main surface side by wet etching the silicon substrate using the mask patterns as masks, and forming a reflective film on the first main surface or the second main surface.
Abstract:
A wafer is formed having a plurality of laser-to-slider submount features on a first surface. An etching process is used to form scribe lines between the submounts on the first surface of the wafer. The wafer is separated at the scribe lines to form the submounts.
Abstract:
A densely-spaced single-emitter laser diode configuration is created, by using a laser bar (or similar array configuration) attached to a submount component of a size sufficient to adequately support the enter laser structure. The surface of the submount component upon which the laser structure is attached is metallized and used to form the individual electrical contacts to the laser diodes within the integrated laser structure. Once attached to each other, the laser structure is singulated by creating vertical separations between adjacent light emission areas. The submount metallization is similarly segmented, creating separate electrodes that are used to individually energize their associated laser diodes.
Abstract:
Embedded Wafer-Level Packaging (eWLP) devices, packages and assemblies and methods of making them are provided. The eWLP methods allow back side electrical and/or thermal connections to be easily and economically made at the eWLP wafer level without having to use thru-mold vias (TMVs) or thru-silicon vias (TSVs) to make such connections. In order to create TMVs, processes such as reactive ion etching or laser drilling followed metallization are needed, which present difficulties and increase costs. In addition, the eWLP methods allow electrical and optical interfaces to be easily and economically formed on the front side and/or on the back side of the eWLP wafer, which allows the eWLP methods to be used to form optoelectronic devices having a variety of useful configurations.
Abstract:
A semiconductor laser element includes a substrate; a semiconductor layer formed on a front surface of the substrate; a first electrode formed on a back surface of the substrate; a second electrode formed on a front surface of the semiconductor layer; and at least one mark configured to allow reading of predetermined information, the at least one mark being formed in at least one of (i) a position on the surface on which the first electrode is formed, spaced apart from the first electrode and (ii) a position on the surface on which the second electrode is formed, spaced apart from the second electrode. The at least one mark is made of a metal material and has a thickness smaller than a thickness of the electrode that is formed on the surface on which the at least one mark is formed.