Abstract:
A photocathode having a gate electrode so that modulation of the resulting electron beam is accomplished independently of the laser beam. The photocathode includes a transparent substrate, a photoemitter, and an electrically separate gate electrode surrounding an emission region of the photoemitter. The electron beam emission from the emission region is modulated by voltages supplied to the gate electrode. In addition, the gate electrode may have multiple segments that are capable of shaping the electron beam in response to voltages supplied individually to each of the multiple segments.
Abstract:
A photocathode having a UV glass substrate and a laminate composed of a SiO2 layer, a GaAlN layer, a Group III-V nitride semiconductor layer and an AlN buffer layer provided on the UV glass substrate in succession. The UV glass substrate, which absorbs infrared rays, can be heat treated at a high speed by photoheating. Further, the UV glass substrate, which is transparent to ultraviolet rays, permits ultraviolet rays to be introduced into the Group III-V nitride semiconductor layer where photoelectric conversion occurs.
Abstract:
An image display apparatus includes a nanotube assembly having a plurality of nanotubes arranged in an array. An optical excitation device is provided adjacent to the nanotube assembly. The optical excitation device includes a diffraction grating and a piezoelectric crystal disposed adjacent to the diffraction grating. A radiation source generates a write beam incident to the piezoelectric crystal, a read beam incident to the diffraction grating, and an erase beam incident to the diffraction grating. When voltage is applied to the piezoelectric crystal, the write beam scans across the diffraction grating and forms a grating pattern in the diffraction grating. The read beam reads the grating pattern as a holographic image on the at least one nanotube. The erase beam erases the grating pattern.
Abstract:
An electron-emitting photocathode includes a base and a large number of projecting elements such as microscopic wires projecting from a surface of the base. The photocathode has high quantum efficiency, and hence can be used as the emitting element in a sensitive phototube.
Abstract:
A light intensifier tube is described and which includes a photocathode; a luminescent screen disposed in spaced relation relative the photocathode; a shutter electrode disposed intermediate the photocathode and the luminescent screen; and an anode located intermediate the shutter electrode and the luminescent screen is provided.
Abstract:
An electron beam lithography system includes a laser for generating a laser beam, and a beam splitter for splitting the laser beam into a plurality of light beams. The intensity of the light beams is individually modulated. The light beams are of sufficient energy such that, when they impinge on a photocathode, electrons are emitted. Modulation of the light beams controls modulation of the resulting electron beams. The electron beams are provided to an electron column for focusing and scanning control. Finally, the electron beams are used to write a scanning surface, for example, using an interlaced writing strategy.