Abstract:
A solar cell module including a plurality of solar cell elements 1 sealed by EVA resin between a front surface glass 20 and a rear surface member 5 is provided with a sodium diffusion preventing layer of a PET film 6 of a smaller water vapor transmission rate than those of the EVA sheets 3, 4 interposed between the front surface glass 20 and the solar cell elements 1.
Abstract:
A microdischarge photodetector has a photocathode, an insulator and an anode. A cavity of limited size is disposed in the insulator and filled with gas. A voltage applied between the photocathode and the anode produces a plasma. Light incident on the photocathode having photon energies larger than about the work function produces photoelectrons are ejected from the photocathode and accelerated by the plasma electric field. The incident light is detected by detecting an increase in the plasma current or light emission from the plasma. The cavity may be flat or tapered and is designed to optimize detector performance.
Abstract:
The present invention provides a method of forming a zinc oxide film on a conductive substrate, which comprises dipping the conductive substrate and a counter electrode in an aqueous solution containing at least nitric acid ion and zinc ion and supplying a current between these electrodes to form a zinc oxide film, wherein the aqueous solution further contains polycarboxylic acid in which a carboxyl radical is bonded to each of carbon having sp2 hybrid orbital, or its ester with a concentration of 0.5 nullmol/L to 500 nullmol/L. Thereby, it is possible to form in a short time a thin film having texture structure exhibiting an optical confinement effect, to prevent abnormal growth of a deposited film, and to obtain a zinc oxide thin film having excellent uniformity and adhesion on a surface thereof where the film is formed. Also, by applying the photovoltaic device to a stacked structure, it is possible to enhance the photoelectric characteristics and mass producibility.
Abstract:
A housing for microelectronic devices requiring an internal vacuum for operation, e.g., an image detector, is formed by tape casting and incorporates leads between interior and exterior of said housing where said leads are disposed on a facing surface of green tape layers. Adjacent green tape layers having corresponding apertures therein are stacked on a first closure member to form a resulting cavity and increased electrical isolation or channel sub-structures are achievable by forming adjacent layers with aperture dimension which vary non-monotonically. After assembly of the device within the cavity, a second closure member is sealed against an open face of the package in a vacuum environment to produce a vacuum sealed device.
Abstract:
In a radiographic image intensifier having an input window, and a method for its production, an intermediate layer is deposited on a substrate for a luminous layer, thereby smoothing the surface of the substrate. This intermediate layer serves to smooth the surface of the substrate and is thus a good base for a uniform growth of the crystal structure of the luminous layer.
Abstract:
A hybrid photon detector with a photocathode in reflective mode where the same vacuum tube components acts both as a perfect incoming light concentrator and as a perfect focusing electron lens and the photoelectrons are electrostatically focused by the same CPC-shape in the opposite direction (i.e., from the small light collection surface towards a point-like region in the middle of the large-area entrance aperture). The CPC is electrically conductive and split into two electrodes by a narrow nonconductive interval positioned in a particular place along the CPC. The photocathode covers the light collection area of the CPC, and the photocathode is operated in the reflective mode such that photoelectrons emerge from the same surface through which the photons enter. Photoelectrons emerging from the entire photocathode are accelerated and focused onto a small electronic sensor placed in the middle of the entrance aperture of the CPC.
Abstract:
A light intensifier tube is described and which includes a photocathode; a luminescent screen disposed in spaced relation relative the photocathode; a shutter electrode disposed intermediate the photocathode and the luminescent screen; and an anode located intermediate the shutter electrode and the luminescent screen is provided.
Abstract:
A scanning probe microscope includes a laser diode (1a) as a light source for emitting light lower in energy level than band gap of semiconductor as a sample. Laser light (2) emitted therefrom should be of wavelength larger in value than a wavelength A calculated as follows: nullnullhnullc/Eg where h is Planck's constant, c represents speed of light and Eg represents band gap. When the semiconductor as a sample is silicon, the band gap thereof is 1.12 eV, thus calculating the wavelength null at 1.107 nullm. The laser diode (1a) should be such that the laser light (2) emitted therefrom is of wavelength larger in value than null. It is therefore allowed to avoid emission of light higher in energy level than the band gap of silicon as a sample and eventually, avoid generation of photoelectric current in the sample.
Abstract:
An electron beam device according to the present invention is made up of an electron beam source for emitting an electron beam, an electron optical system for irradiating the electron beam onto a specimen, a specimen holder for holding the specimen, a specimen tilting section for producing relative tilt angles between the specimen holder and the electron beam, an electron beam detecting section for detecting electron beam emitted from the specimen, and a data correcting section for correcting the three-dimensional detection data to have specified relationship under the condition of a relative tilt angle between the specimen holder and the electron beam.
Abstract:
Apparatus and method for mounting electronic components enhanced in mounting efficiency by eliminating loss time are disclosed. In the apparatus and method, electronic components are picked up from a supplying unit of the electronic components by a transfer head, and are mounted on a board. The height of components already mounted on the board being conveyed is measured by a height measuring unit comprising a CCD light sensor including a light emitting unit and a light receiving unit. In mounting operation, the transfer height of the transfer head when moving on the board is set to a height enough to keep an allowance to the already mounted components on the basis of the height measurement of components. As a result, without useless elevating motions of the transfer head, the loss time is eliminated and the mounting efficiency is enhanced.