Abstract:
A system and method are used to isolate a first gas from a second gas using a third gas. A first chamber includes an element that emits light based on a first gas. A second chamber uses the emitted light to perform a process and includes the second gas. A gaslock that couples the first chamber to the second chamber. A gas source supplies a third gas between the first and the second gas in the gaslock, such that the first gas is isolated from the second gas in the gaslock. The first and third gas can be pumped from the first chamber and separated from one another, such that the first gas can be recycled for reuse to form the emitting light.
Abstract:
A mercury-free arc tube includes a closed glass bulb held between pinch seal portions located at opposite ends of the close glass bulb; and a pair of electrodes provided in the closed glass bulb so as to be opposite to each other. The closed glass bulb does not contain mercury but contains main light emitting metal halide (NaI and ScI3). A rare gas is enclosed in the closed glass bulb with a charged pressure set to be in a range of from 8 to 20 atmospheres. If necessary, a predetermined buffer metal halide acting as a buffer substance is enclosed in the closed glass bulb. The charged pressure of the rare gas is higher than the conventional charged pressure (6 atmospheres).
Abstract:
A discharge bulb including: an arc tube having a light emitting portion constructed in a manner that a light emitting substance is enclosed therein by pinch-sealing the arc tube, and discharge electrodes are oppositely arranged therein; and a shroud glass tube hermetically sealing and covering the arc tube, so as to form a space between the shroud glass tube and the arc tube. And a water content or pressure of gas enclosed in the sealed space is specified.
Abstract:
A neon lamp including a sealed glass bulb, electrodes and leads connected to the electrodes has a flat head whose center region descends into the interior of the sealed glass bulb. A method of producing the neon lamp includes steps of charging neon gas into a glass tube through a fine glass tube at the head of the glass tube, sealing the fine glass tube to obtain a sealed glass bulb having a projecting tip portion, removing excess glass of the projecting tip portion, and shaping the projecting tip portion into a substantially flat or lenticular head portion. A system for producing the neon lamp includes a shaping head for accommodating the sealed glass bulb with its projecting tip portion exposed outside the shaping head, heating means for melting the projecting tip portion, a projecting tip cutter for removing excess glass of the projecting tip portion, and a head presser for shaping the projecting tip portion into a substantially flat or lenticular shape.
Abstract:
The invention relates to a mercury-free high-pressure discharge lamp for use in a vehicle headlight. The ionizable filling of the high-pressure discharge lamp according to the invention comprises exclusively xenon and the halides of the metals sodium, scandium, indium and zinc.
Abstract:
A pelletized lamp fill material suitable for delivering a precise quantity of rhenium and a halogen into the light emitting chamber of a tungsten halogen lamp. The pellet is formed by pressure aggregating a mixture of a metal powder and a rhenium-halogen compound. In a pellet suitable for delivering bromine into the lamp, the metal powder may be mixed with rhenium tribromide powder to form the pellet. The release of the bromine and rhenium is desirably controlled over time as a function of temperature.
Abstract:
The invention is directed to a method for generating extreme ultraviolet (EUV) radiation based on a radiation-emitting plasma, particularly for generating EUV radiation with a wavelength around 13 nm. The object of the invention, to find a novel possibility for generating extreme ultraviolet radiation based on a radiation-emitting plasma in which the emission output of the EUV source is increased to the wavelength range above the L-absorption edge of silicon without substantially increasing the technical and monetary expenditure for plasma generation, is met in a method for generating extreme ultraviolet radiation through emission of broadband radiation from a plasma under vacuum conditions in that the plasma is generated using at least one element from V to VII in the p-block of the fifth period of the periodic table of elements. Iodine, tellurium, antimony or materials containing these elements or chemical compounds formed with these elements are preferably used. The invention is advantageously applied in EUV lithography for semiconductor chip fabrication.
Abstract:
A discharge light-emitting device includes a gas-filled discharge spaces (30) to use electric discharge in the gas. The gas contains at least 0.01-1% water vapor by volume. The specified amount of water vapor decreases discharge voltage markedly. Water vapor is introduced between a sealing step and an evacuation step so that the gas-filled discharge spaces can finally contain a desired amount of water vapor.
Abstract:
An apparatus and method for achieving desired spectral emission characteristics in plasma lamps is disclosed. The apparatus and method use multi-layer thin film optical interference coatings to selectively reflect a portion of the light such that it can be absorbed in the plasma. The multi-layer thin film coating is applied to any surface of the lamp, which substantially surrounds the plasma. The number and thickness of the layers in the coating are selected to ensure that a significant portion of the selected light emitted from the plasma is reflected by the coating and absorbed by the plasma. The properties of the coating, reflectance, transmittance and absorption are determined as a function of plasma and lamp characteristics. These characteristics include the spectral emission characteristics of the plasma, the spectral absorption characteristics of the plasma, the physical dimensions of the plasma, the angular distribution of the light emitted from the plasma on the coating and the geometry of the coated surface.
Abstract:
A low-pressure discharge lamp with a double spiral shaped discharge tube including two spiral shaped tube portions. The tube portions define a central axis of the discharge tube. A cold chamber portion connects the ends of the spiral shaped tube portions. The cold chamber portion has a first transversal dimension substantially perpendicular to the central axis which is larger than the diameter of the tube portions. The cold chamber portion further has a second transversal dimension substantially parallel to the central axis. The second transversal dimension of the cold chamber portion substantially corresponds to the diameter of the tube portions.